Tool wear prediction method based on symmetrized dot pattern and multi-covariance Gaussian process regression

Measurement ◽  
2021 ◽  
pp. 110466
Author(s):  
Chuandong Zhang ◽  
Wei Wang ◽  
Hai Li
Author(s):  
Jiaqi Hua ◽  
Yingguang Li ◽  
Wenping Mou ◽  
Changqing Liu

Cutting tool wear prediction plays an important role in the machining of complex aerospace parts, and it is still a challenge under varying cutting conditions. To overcome the limitations of the existing methods in generalization ability when dealing with cutting conditions changing largely, this paper proposed a novel cutting tool wear prediction method based on continual learning. A meta-LSTM model is firstly trained for specific cutting conditions and can be easily fine-tuned with very small number of samples to adapt to new cutting conditions. Specifically, the meta-model could be continuously updated as machining data increase by using an orthogonal weights modification method. The experiment results show that the proposed method can realize accurate prediction of tool wear under different cutting conditions. Compared with existing methods including meta-learning methods, the range of adapted cutting conditions could be expanded as the task distribution of new cutting conditions is continuously learned by the prediction model.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 140726-140735
Author(s):  
Mingwei Wang ◽  
Jingtao Zhou ◽  
Jing Gao ◽  
Ziqiu Li ◽  
Enming Li

2021 ◽  
Author(s):  
Guofa Li ◽  
Yanbo Wang ◽  
Jialong He ◽  
Yongchao Huo

Abstract Tool wear during machining has a great influence on the quality of machined surface and dimensional accuracy. Tool wear monitoring is extremely important to improve machining efficiency and workpiece quality. Multidomain features (time domain, frequency domain and time-frequency domain) can accurately characterise the degree of tool wear. However, manual feature fusion is time consuming and prevents the improvement of monitoring accuracy. A new tool wear prediction method based on multidomain feature fusion by attention-based depth-wise separable convolutional neural network is proposed to solve these problems. In this method, multidomain features of cutting force and vibration signals are extracted and recombined into feature tensors. The proposed hypercomplex position encoding and high dimensional self-attention mechanism are used to calculate the new representation of input feature tensor, which emphasizes the tool wear sensitive information and suppresses large area background noise. The designed depth-wise separable convolutional neural network is used to adaptively extract high-level features that can characterize tool wear from the new representation, and the tool wear is predicted automatically. The proposed method is verified on three sets of tool run-to-failure data sets of three-flute ball nose cemented carbide tool in machining centre. Experimental results show that the prediction accuracy of the proposed method is remarkably higher than other state-of-art methods. Therefore, the proposed tool wear prediction method is beneficial to improve the prediction accuracy and provide effective guidance for decision making in processing.


2021 ◽  
Vol 54 ◽  
pp. 274-278
Author(s):  
Jianmin Wang ◽  
Yingguang Li ◽  
Jiaqi Hua ◽  
Changqing Liu ◽  
Xiaozhong Hao

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Weixin Xu ◽  
Huihui Miao ◽  
Zhibin Zhao ◽  
Jinxin Liu ◽  
Chuang Sun ◽  
...  

AbstractAs an integrated application of modern information technologies and artificial intelligence, Prognostic and Health Management (PHM) is important for machine health monitoring. Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry. In this paper, a multi-scale Convolutional Gated Recurrent Unit network (MCGRU) is proposed to address raw sensory data for tool wear prediction. At the bottom of MCGRU, six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network, which augments the adaptability to features of different time scales. These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations. At the top of the MCGRU, a fully connected layer and a regression layer are built for cutting tool wear prediction. Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models.


Sign in / Sign up

Export Citation Format

Share Document