Repetitive motion planning of PA10 robot arm subject to joint physical limits and using LVI-based primal–dual neural network

Mechatronics ◽  
2008 ◽  
Vol 18 (9) ◽  
pp. 475-485 ◽  
Author(s):  
Yunong Zhang ◽  
Xuanjiao Lv ◽  
Zhonghua Li ◽  
Zhi Yang ◽  
Ke Chen
Robotica ◽  
2009 ◽  
Vol 28 (4) ◽  
pp. 525-537 ◽  
Author(s):  
Yunong Zhang ◽  
Kene Li

SUMMARYIn this paper, to diminish discontinuity points arising in the infinity-norm velocity minimization scheme, a bi-criteria velocity minimization scheme is presented based on a new neural network solver, i.e., an LVI-based primal-dual neural network. Such a kinematic planning scheme of redundant manipulators can incorporate joint physical limits, such as, joint limits and joint velocity limits simultaneously. Moreover, the presented kinematic planning scheme can be reformulated as a quadratic programming (QP) problem. As a real-time QP solver, the LVI-based primal-dual neural network is developed with a simple piecewise linear structure and high computational efficiency. Computer simulations performed based on a PUMA560 manipulator model are presented to illustrate the validity and advantages of such a bi-criteria velocity minimization neural planning scheme for redundant robot arms.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 983-999
Author(s):  
Zhaoli Jia ◽  
Siyuan Chen ◽  
Zhijun Zhang ◽  
Nan Zhong ◽  
Pengchao Zhang ◽  
...  

SUMMARYIn order to solve joint-angle drift problem of dual redundant manipulators at acceleration-level, an acceleration-level tri-criteria optimization motion planning (ALTC-OMP) scheme is proposed, which combines the minimum acceleration norm, repetitive motion planning, and infinity-norm acceleration minimization solutions via weighting factor. This scheme can resolve the joint-angle drift problem of dual redundant manipulators which will arise in single criteria or bi-criteria scheme. In addition, the proposed scheme considers joint-velocity joint-acceleration physical limits. The proposed scheme can not only guarantee joint-velocity and joint-acceleration within their physical limits, but also ensure that final joint-velocity and joint-acceleration are near to zero. This scheme is realized by dual redundant manipulators which consist of left and right manipulators. In order to ensure the coordinated operation of manipulators, two motion planning problems are reformulated as two general quadratic program (QP) problems and further unified into one standard QP problem, which is solved by a simplified linear-variational-inequalities-based primal-dual neural network at the acceleration-level. Computer-simulation results based on dual PUMA560 redundant manipulators further demonstrate the effectiveness and feasibility of the proposed ALTC-OMP scheme to resolve joint-angle drift problem arising in the dual redundant manipulators.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 831
Author(s):  
Izzat Al-Darraji ◽  
Dimitrios Piromalis ◽  
Ayad A. Kakei ◽  
Fazal Qudus Khan ◽  
Milos Stojemnovic ◽  
...  

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d'Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.


Sign in / Sign up

Export Citation Format

Share Document