Power flow and efficiency analysis of multi-flow planetary gear trains

2015 ◽  
Vol 92 ◽  
pp. 86-99 ◽  
Author(s):  
Fuchun Yang ◽  
Jianxiong Feng ◽  
Hongcai Zhang
2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879410 ◽  
Author(s):  
Yahui Cui ◽  
Jing Gao ◽  
Xiaomin Ji ◽  
Xintao Zhou ◽  
Haitao Yan

The concept of multi-attribute topological graph is proposed in this article to represent the characteristics of both structure and state for typical one-degree-of-freedom planar spur closed planetary gear trains. This method is well applied in power flow analysis and provides a graphical view for the types, values, directions, and transmission relationship of power flow, especially for the recirculation power representation. Furthermore, a template model of multi-attribute topological graph for closed planetary gear trains is also presented, which would be helpful to the multi-attribute topological graph generation for some certain types of closed planetary gear trains just by changing symbols in the template model. A corresponding software is also developed to make the analysis process more convenient. By inputting different parameters, the different visual results can be obtained automatically, thus benefiting engineers in conceptual design.


2014 ◽  
Vol 575 ◽  
pp. 395-399
Author(s):  
Long Chang Hsieh ◽  
Teu Hsia Chen ◽  
Hsiu Chen Tang

Planetary gear trains can be used as the gear reducers with high reduction ratio. This paper focused on the kinematic and meshing efficiency analysis of planetary simple gear reducer with two ring gears. First, the planetary simple gear train with two ring gears is proposed by using different shift coefficients. Then, by referring to the train value equation, the reduction-ratio equation is derived for the design the planetary gear reducer with two ring gears. According to reduction-ratio equation, the planetary gear reducers with two ring gears and having reduction ratios (20, 50, and 100) are synthesized. Then, based on the latent power theorem, the meshing efficiency equation of planetary gear train with two ring gears is derived. According to the meshing efficiency equation, the meshing efficiencies of planetary gear trains with two ring gears are analyzed. In this paper, we conclude: (1) Larger reduction ratio makes less meshing efficiency, and (2) The meshing efficiency of planetary gear reducer with two ring gears is not good.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Essam Lauibi Esmail

In a planetary gear train (PGT), the power loss by tooth friction is a function of the potential power developed within the gear train elements rather than that being transmitted through it. In the present work, we focus on the operating conditions of two-degree-of-freedom (two-DOF) PGTs. Any operating condition induces its own internal power flow pattern; this implies that tooth friction loss depends on the mechanism of power loss developed in the gearing that differs from one case to another over the entire range of operating conditions. The approach adopted in this paper stems from a unification of the kinematics and tooth friction losses of PGTs and is based on potential powers and power ratios. The range of applicability of the power relations is investigated and clearly defined, and tooth friction loss formulas obtained by their use are tabulated. A short comparison with formulas currently available in the literature is also made. The simplicity of the proposed method for analyzing two-input or two-output planetary gear trains is helpful in the design, optimization, and control of hybrid transmissions. It assists particularly in choosing correctly the appropriate operating conditions to the involved application.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Zeng-Xiong Peng ◽  
Ji-Bin Hu ◽  
Tian-Li Xie ◽  
Chun-Wang Liu

To obtain multiple speed ratios, a synthesis methodology of planetary gear trains (PGTs) with multiple operating degrees-of-freedom (DOFs) is proposed based on the variable structure method. Variable structure of PGT is accomplished by changing the fixed interconnection edge. First, PGTs with two operating DOFs are synthesized with a deduction method based on the relationship between the number of planetary gear sets (PGSs) and number of fixed interconnection edges. Next, connection characteristics of fixed interconnection edges are defined as frequency of utilization to construct original speed ratios of the two operating DOFs schemes. The connection characteristics are then obtained based on the power flow analysis. PGT graph model with connection characteristic is built to provide guidance in the design of varying structure. Finally, multispeed PGTs with multiple operating DOFs are synthesized based on the graph model and lever analogy. A design example for three-PGS PGTs is considered to highlight capabilities of the variable structure method.


2015 ◽  
Vol 764-765 ◽  
pp. 334-337
Author(s):  
Yi Chang Wu ◽  
Ming Yuan Chen ◽  
Che Wei Chang

This paper presents kinematic analysis and power-flow analysis of an existing 8-speed bicycle drive hub by using the fundamental circuit method. First, a planetary gear mechanism, which consists of three basic planetary gear trains connected in series, and its clutching sequence table are introduced. Based on the fundamental circuits, six kinematic equations of the drive hub are derived. Then, the power-flow diagrams at related gears are illustrated based on the clutching sequence table, and the power-flow paths of the bicycle drive hub can be identified. The results of this study are beneficial to the development of multi-speed drive hubs for bicycles.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


Sign in / Sign up

Export Citation Format

Share Document