Improved analytical calculation model of spur gear mesh excitations with tooth profile deviations

2020 ◽  
Vol 149 ◽  
pp. 103838 ◽  
Author(s):  
Zaigang Chen ◽  
Ziwei Zhou ◽  
Wanming Zhai ◽  
Kaiyun Wang
Author(s):  
Ruxin Lu ◽  
Wencheng Tang

The temperature has a great contribution to the mesh stiffness and backlash of the gear pair. Presence of thermal deformation caused by temperature will complicate the gear teeth interaction. In this paper, the thermal time-varying stiffness model and thermal time-varying backlash model are proposed with the consideration of tooth profile error and total thermo-elastic deformation consists of the teeth deformation, teeth contact deformation, and gear body-induced deformation. The key parameters of thermo-elastic coupling deformation affected by temperature are calculated. Based on the proposed models, the influencing mechanism of temperature on the tooth profile error, mesh stiffness, total deformation, and backlash are revealed. The effects of shaft radius and torque load on the thermal stiffness and thermal backlash are studied. The proposed thermal stiffness and backlash calculation model are proven to be more comprehensive and the correctness is validated.


2018 ◽  
Vol 19 (3) ◽  
pp. 306 ◽  
Author(s):  
Yong Yang ◽  
Jiaxu Wang ◽  
Qinghua Zhou ◽  
Yanyan Huang ◽  
Jinxuan Zhu ◽  
...  

Some tooth profile geometric features, such as root fillet area, flank modification and wear are of nonnegligible importance for gear mesh stiffness. However, due to complexity of analytical description, their influence on mesh stiffness was always ignored by existing research works. The present work derives analytical formulations for time-varying gear mesh stiffness by using parametric equations of flank profile. Tooth geometry formulas based upon a rack-type tool are derived following Litvin's vector approach. The root fillet area and tooth profile deviations can therefore be fully considered for spur gear tooth stiffness evaluation. The influence of gear fillet determined by tip fillet radius of the rack-type tool is quantified parametrically. The proposed model is validated to be effective by comparing with a finite element model. Further, the model is applied to investigate the stiffness variations produced by tooth addendum modification, tooth profile nonuniform wear and modification.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


2009 ◽  
Vol 33 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mohamed Nizar Bettaieb ◽  
Mohamed Maatar ◽  
Chafik Karra

The purpose of this work is to determine the spur gear mesh stiffness and the stress state at the level of the tooth foot. This mesh stiffness is derived from the calculation of the normal tooth displacements: local displacement where the load is applied, tooth bending displacement and body displacement [15]. The contribution of this work consists in, basing on previous works, developing optimal finite elements model in time calculation and results precision. This model permits the calculation of time varying mesh stiffness and the evaluation of stress state at the tooth foot. For these reasons a specific Fortran program was developed. It permit firstly, to obtain the gear geometric parameters (base radii, outside diameter,…) and to generate the data base of the finite element meshing of a tooth or a gear. This program is interfaced with the COSMOS/M finite element software to predict the stress and strain state and calculate the mesh stiffness of a gear system. It is noted that the mesh stiffness is periodic and its period is equal to the mesh period.


1987 ◽  
Vol 53 (491) ◽  
pp. 1538-1543
Author(s):  
Hiroshige FUJIO ◽  
Ryouhei TAKADA ◽  
Takaharu SATOU ◽  
Shinya MASHIMO

1973 ◽  
Vol 39 (324) ◽  
pp. 2562-2568
Author(s):  
Yuji YAMAMOTO ◽  
Fujio HIRANO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document