Improved analytical model for calculating mesh stiffness and transmission error of helical gears considering trochoidal root profile

2021 ◽  
Vol 163 ◽  
pp. 104386
Author(s):  
Woo-Jin Chung ◽  
Jung-Ho Park ◽  
Ho-Gil Yoo ◽  
Young-Jun Park ◽  
Su-chul Kim ◽  
...  
2021 ◽  
Vol 263 (5) ◽  
pp. 1275-1285
Author(s):  
Joshua Götz ◽  
Sebastian Sepp ◽  
Michael Otto ◽  
Karsten Stahl

One important source of noise in drive trains are transmissions. In numerous applications, it is necessary to use helical instead of spur gear stages due to increased noise requirements. Besides a superior excitation behaviour, helical gears also show additional disadvantageous effects (e.g. axial forces and tilting moments), which have to be taken into account in the design process. Thus, a low noise spur gear stage could simplify design and meet the requirements of modern mechanical drive trains. The authors explore the possibility of combining the low noise properties of helical gears with the advantageous mechanical properties of spur gears by using spur gears with variable tip diameter along the tooth width. This allows the adjustment of the total length of active lines of action at the beginning and end of contact and acts as a mesh stiffness modification. For this reason, several spur gear designs are experimentally investigated and compared with regard to their excitation behaviour. The experiments are performed on a back-to-back test rig and include quasi-static transmission error measurements under load as well as dynamic torsional vibration measurements. The results show a significant improvement of the excitation behaviour for spur gears with variable tip diameter.


2012 ◽  
Vol 215-216 ◽  
pp. 917-920
Author(s):  
Rong Fan ◽  
Chao Sheng Song ◽  
Zhen Liu ◽  
Wen Ji Liu

Dynamic modeling of beveloid gears is less developed than that of spur gears, helical gears and hypoid gears because of their complicated meshing mechanism and 3-dimsional dynamic coupling. In this study, a nonlinear systematic coupled vibration model is created considering the time-varying mesh stiffness, time-varying transmission error, time-varying rotational radius and time-varying friction coefficient. Numerical integration applying the explicite Runge-Kutta formula and the implicit direct integration is used to solve the nonlinear dynamic model. Also, the dynamic characteristics of the marine gear system are investigated.


2014 ◽  
Vol 657 ◽  
pp. 649-653 ◽  
Author(s):  
Virgil Atanasiu ◽  
Cezar Oprişan ◽  
Dumitru Leohchi

The paper presents an analytical investigation of the effect of the tooth wear on the dynamic transmission error of helical gear pairs with small number of pinion teeth. Firstly, the dynamic analysis is conducted to investigate only the effect of the time-varying mesh stiffness on the variation of dynamic transmission error along the line of action. Then, the tooth wear effect on the dynamics of helical gear with small number of pinion teeth is being researched. In the analysis, instantaneous dynamic contact analysis is used in wear depth calculations. A comparative study was performed to investigate the relation between total contact ratio, mesh stiffness and dynamic transmission error of helical gear pairs with small number of teeth.


2014 ◽  
Vol 658 ◽  
pp. 17-22
Author(s):  
Virgil Atanasiu ◽  
Cezar Oprişan ◽  
Dumitru Leohchi

This study presents a dynamic model of helical gears for analyzing the effect of pinion-shaft flexibility on the dynamic behavior of helical gears. In the analysis, the time-varying mesh stiffness is determined in relation with the geometry of the gear pair and incorporates the deflection of the pinion–shaft. A comparison analysis is presented for the dynamic transmission error response of gear pairs supported with a rigid and a flexible shaft system. The results show that the pinion-shaft deflection must be included in the dynamic analysis since they can strongly affect the dynamic characteristics of helical gear pairs.


Author(s):  
Bing Yuan ◽  
Shan Chang ◽  
Geng Liu ◽  
Lan Liu ◽  
Lehao Chang

The numerical calculation model of time-varying mesh stiffness, static transmission error and composite mesh error of modified helical gears is developed based on loaded tooth contact analysis (LTCA) model. To minimize the fluctuation of vibration excitation force, the optimal modification parameters of three modification methods under designed applied torque and ideal tooth contact condition are determined, and the effects of three modification methods on time-varying mesh stiffness, static transmission error and composite mesh error are analyzed. In order to analyze the sensitivity of the three modification methods to applied torque and gear misalignment, the effects of applied torque in wide range and gear misalignment on vibration excitation force and dynamic transmission error are investigated. The results show that the difference of time-varying mesh stiffness, static transmission error, composite mesh error of helical gears with different modifications methods are obvious. However, the fluctuation of vibration excitation force of helical gears is reduced significantly. When the applied torque is higher than the designed applied torque, the three modification methods show a great reduction of system vibration. When the applied torque is too low, the vibration of modified helical gears is larger than unmodified ones. Meanwhile, the resonance speed of the helical gears is slightly lower. With the increase of gear misalignment, the resonance speed becomes lower correspondingly and the effect of the three modification methods on the reduction of vibration excitation force is not obvious any more. The results can provide effective reference for establishing robust optimization method for tooth surface modification.


Sign in / Sign up

Export Citation Format

Share Document