dynamic transmission error
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yaosen Wang ◽  
Adrian A. Hood ◽  
Christopher G. Cooley

Abstract This study analyzes the nonlinear static and dynamic response in spur gear pairs with tooth root crack damage. A finite element/contact mechanics (FE/CM) model is used that accurately captures the elastic deformations on the gear teeth due to kinematic motion, tooth and rim deformations, vibration, and localized increases in compliance due to a tooth root crack. The damage is modeled by releasing the connectivity of the finite element mesh at select nodes near a tooth crack. The sensitivity of the calculated static transmission errors and tooth mesh stiffnesses is determined for varying crack initial locations, final locations, and the path from the initial to final location. Gear tooth mesh stiffness is calculated for a wide range of tooth root crack lengths, including large cracks that extend through nearly all of the tooth. Mesh stiffnesses are meaningfully reduced due to tooth root crack damage. The dynamic response is calculated for cracks of varying length. Larger cracks result in increased peak dynamic transmission errors. For small tooth root cracks the spectrum of dynamic transmission error contains components near the natural frequency of the gear pair. The spectrum of dynamic transmission error has broadband frequency response for large tooth root cracks that extend further than one-half of the tooth’s thickness.


2021 ◽  
Vol 26 (2) ◽  
pp. 180-191
Author(s):  
Zhigang Chen ◽  
Feng Xie ◽  
Zhihui Liu ◽  
Hongzhi Yan

One of the main tasks in the research of a helicopter two-speed transmission system was to improve its dynamic characteristics. For the low gear mode of the system, a dynamic model was established by using the lumped parameter method, the method of Runge-Kutta was used to solve the nonlinear dynamic system equations. The effect of the gear module on the dynamic transmission error, dynamic load of the gear pair and the dynamic windup angle of a one-way clutch were studied. And the effect of the one-way clutch torsional stiffness on the dynamic transmission error and dynamic load of the gear pair was also studied. The results show that: 1)~the dynamic transmission error of the gear pair decreases and the dynamic load of the gear pair increases with the increase of the gear module at the lower range of excitation frequencies; 2)~the dynamic windup angle of the one-way clutch increases with an increase of the gear module. 3)~the dynamic transmission error of the gear pair and the maximum dynamic load increases with an increase of the one-way clutch torsional stiffness at the lower and medium range of excitation frequencies. The above results can provide reference for the subsequent upgrade and improvement of the two-speed transmission system.


Author(s):  
Zhang Jun ◽  
Tang Wei-min ◽  
Chen Qin ◽  
Chen Tao

As one of the most influential factors leading to gear vibrations, transmission errors of the engaging gears must be controlled to achieve a desirable dynamic performance for a power transmission system. It is well known that tooth modification is an effective way to reduce the fluctuations of the transmission error of a gear pair. The challenge is determining how to establish a quantitative relationship between the tooth modification parameters and the transmission error fluctuations of a gear pair. The present study aims to reveal the sensitivity of the tooth modification parameters on the transmission error fluctuations of a helical planetary gear train in a wind turbine gearbox. For this purpose, a sophisticated parametric three-dimensional contact model that included the micro-geometries of the tooth modification is developed in the ROMAX® environment. Based on this model, a loaded tooth contact analysis is carried out to compute the meshing characteristics, such as the contact pressure and transmission error of each gear pair in the planetary gear train. With the obtained meshing characteristics, the tooth modification amounts of the engaging gears were determined using empirical formulas. These modification amounts are designated as the mean values of the samples generated by the central composite method. After repeating the loaded tooth contact analysis process for each generated sample, a quadratic polynomial function is derived using the response surface method to describe the quantitative relationship between the tooth modification parameters and the dynamic transmission error fluctuations. A large number of random samples are generated using a Monte Carlo method, and the corresponding dynamic transmission error fluctuations are determined with the aforementioned quadratic polynomial function. Based on these samples, a reliability sensitivity analysis is carried out to demonstrate the effects of the tooth modification parameters on the dynamic transmission error fluctuations of the helical planetary gear train.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Huan Bai ◽  
Chaosheng Song ◽  
Caichao Zhu ◽  
Jianjun Tan ◽  
Xinzi Li

Abstract Using finite element and lumped parameter methods, a gear–shaft–bearing coupled vibration model was developed for a single-stage gear transmission system considering bearing waviness, bearing clearance, time-varying transmission error excitation, and shaft flexibility. Runge–Kutta algorithm was applied for solving the dynamic response of the coupled model. The influences of rotational speed, the number, and amplitude of bearing waviness on the dynamics were studied. Results show that any change in the number of bearing waviness has an obvious impact on the dominant frequency component of the dynamic transmission error. When the number of bearing waviness is equal to the number or multiples of the rolling element, the dynamic mesh force occurs peak response and the system vibrates violently. At low and medium speeds range, the gear transmission system with bearing waviness has larger vibrational energy than the gear transmission system without bearing waviness, leading to unstable dynamic response, which would potentially cause a significant chaotic response. The dominant frequencies of the dynamic transmission error for the gear transmission system with bearing waviness are the ball passage frequency (BPF) and its harmonic frequency. At high speeds range, the main excitation is the transmission error both for the gear transmission systems with and without bearing waviness. In addition, the increasing amplitude of bearing waviness would enlarge the dynamic mesh force and decrease the number of loaded rolling elements.


Author(s):  
Muhammad Nevin Anandika ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract Noise and vibration performance of a gear system is critical in any engineering industry. Excessive vibrational amplitudes originated by the excitations at the gear meshes propagate to the transmission housing to cause noticeable noise, while also increasing gear tooth stresses to degrade durability. As such, gear designers must generate designs that are nominally quiet with low-vibration amplitudes. This implies a gear pair fabricated exactly to the specifications of its blue print will be acceptable for its vibration behavior. Achieving this, however, is not sufficient. As the manufacturing of gears require them to be subject to bands of tolerances afforded by the manufacturing processes employed, the designers must be concerned about variations to the performance of their presumably quite baseline designs within these tolerance bands. This research aims at demonstrating how one type of manufacturing error, random tooth spacing errors, alter the vibratory behavior of a spur gear pair. Two pairs of spur gears are tested for their dynamic transmission error performance. One gear pair with no tooth spacing errors form the baseline. The second gear pair contain an intentionally induced random sequence of spacing errors. The forced vibration responses of both gear pairs are compared within wide ranges of speed and torque. This comparison shows that there is a clear and significant impact of random spacing errors on spur gear dynamics, measurable through examination of their respective transmission error signatures. In the off-resonance regions of speed, vibration amplitudes of the random error pair are higher than the no-error baseline spur gear pair. Meanwhile, at or near resonance peaks, the presence of random spacing errors tends to lower the peak amplitudes slightly as compared to the no-error baseline spur gear pair. The presence of random spacing errors introduces substantial harmonic content that are non-mesh harmonics. This results in a broadband frequency spectrum in addition to an otherwise well-defined frequency spectrum with gear-mesh order components, pointing to an additional concern of noise quality.


2019 ◽  
Vol 13 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Shou-Song Jin ◽  
◽  
Xiao-Tao Tong ◽  
Ya-Liang Wang

The factors influencing rotate vector (RV) reducer dynamic transmission error were studied using virtual prototyping technology, which contained the elastic deformation, working load, part manufacturing error, and assembly clearance. According to the error transmission relationship of the RV reducer, 15 influencing factors were selected to design an orthogonal simulation test. The virtual prototype of the RV reducer was built using CREO and ANSYS, and imported into ADAMS for multi-body dynamics simulation. The simulation method reliability was verified via experiments. The results show that the circle center radius error of the pin gear, the amount of equidistant modification of the cycloid gear, the amount of radial-moving modification of the cycloid gear, the clearance between the support bushing and planet carrier, and the clearance between the crankshaft and the support bushing were positively correlated with the RV reducer dynamic transmission error. Among these, the circle center radius error of the pin gear has the greatest influence on the dynamic transmission error of the RV reducer followed by the amount of equidistant modification of the cycloid gear. The elastic deformation of the part and the load fluctuation show a certain gain effect on the transmission error, the elastic deformation of the cycloid gear has a great influence, and the elastic deformation of the pin gear has the least.


2019 ◽  
Vol 39 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
Xiong Chun ◽  
Chen Siyu

Experimental measurement of transmission error and vibration of a gear pair with crown modification are developed. With the help of high-precision optical encoder, effects of gear misalignment on unloaded and lightly loaded dynamic transmission error, which are relative to gear rattle, are investigated. The gear mesh misalignment is introduced by eccentric sleeve assembled on the output shaft. Effects of modification and misalignment on the dynamic transmission error, are studied at different load and driving velocity conditions. The experimental results show that, with the increase of the crown amplitude, the peak-to-peak values of dynamic transmission error are decreasing dramatically. Impact deformation or elastic deformation is a very important part of the dynamic transmission error although they are unloaded or lightly loaded. The components in harmonics of meshing frequency will change distinctly comparing cases at low input shaft velocity without and with misalignment, but different phenomena are detected while increasing the input shaft velocity. Finally, the relation between transmission error and gear box vibration is illustrated, and spectrum kurtosis is introduced to reveal gear rattle.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
M. Benatar ◽  
M. Handschuh ◽  
A. Kahraman ◽  
D. Talbot

This paper presents a set of motion transmission error data for a family of helical gears having different profile and lead modifications operated under both low-speed (quasi-static) and dynamic conditions. A power circulatory test machine is used along with encoder and accelerometer-based transmission error measurement systems to quantify motion transmission behavior within wide ranges of torque and speed. Results of these experiments indicate that the tooth modifications impact the resultant static and dynamic transmission error amplitudes significantly. A design load is shown to exist for each gear pair of different modifications where static transmission error amplitude is minimum. Forced response curves and waterfall plots are presented to demonstrate that the helical gear pairs tested act linearly with no signs of nonlinear behavior such as tooth contact separations. Furthermore, static and dynamic transmission error amplitudes are observed to be nearly proportional, suggesting that static transmission error can be employed in helical gear dynamic models as the main gear mesh excitation. The data presented here is intended to fill a void in the literature by providing means for validation of load distribution and dynamic models of helical gear pairs.


Sign in / Sign up

Export Citation Format

Share Document