Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces

2014 ◽  
Vol 72 ◽  
pp. 72-93 ◽  
Author(s):  
Yin Shi ◽  
Yongping Wan ◽  
Zheng Zhong
2010 ◽  
Vol 123-125 ◽  
pp. 161-164
Author(s):  
Dong Yu Xu ◽  
Shi Feng Huang ◽  
Chao Ju ◽  
Zong Zhen Zhang ◽  
Xin Cheng ◽  
...  

Periodic and non-periodic 1-3 type cement based piezoelectric composites were fabricated by cut and filling technique, using P(MN)ZT ceramic as functional material and cement as matrix. The influences of periodicity of piezoelectric ceramic rods in the composites on electrical properties of all the composites were discussed. The results show that the non-periodic composites have larger dielectric factor and piezoelectric strain constant than those of the periodic composite. The impedance-frequency spectra analysis indicates that the non-periodic arrangement of ceramic rods can effectively restrict the lateral structural mode of the composite, accordingly reduces the coupling resonant between the thickness resonant mode and lateral resonant mode. The thickness electromechanical coupling coefficient of non-periodic composites is larger than that of the periodic composite. With increasing the non-periodic level of P(MN)ZT ceramic in the composites, the mechanical quality factor of the composites increases gradually. Therefore, 1-3 type cement based piezoelectric composites with different special abilities can be obtained by varying the periodic arrangement of P(MN)ZT ceramic rods in the composites.


Author(s):  
Huang Hsing Pan ◽  
Wei-Ren Lin ◽  
Kuan Huang

In order to increase piezoelectric properties of 0-3 type cement piezoelectric composites (piezoelectric cement) developed for structural health monitoring, nano-quartz powders, as the replacement of cement matrix, were added into PZT/cement composites. The piezoelectric cement consists of 50% PZT and 50% cement by volume. Two gradations of PZT inclusions, single-grading and medium-grading, were chosen to fabricate the piezoelectric cement. Nano-quartz powders of 1% to 6% were added to form nano-quartz piezoelectric cement. Experimental results indicate that nano-quartz powders can reduce the porosity of piezoelectric cement. The single-grading piezoelectric cement (PSQ) with 4% nano-quartz powders and the medium-grading one (PMQ) with 2% have the lowest porosity. The maximum values on both piezoelectric strain factor d33 and relative dielectric constant εr always occur at the minimum porosity of nano-quartz piezoelectric cement. Both the PSQ and the PMQ have the optimum d33=104 pC/N. For the PSQ, 4% nano-quartz powders provide a 22% enhancement on thickness electromechanical coupling coefficient Kt. However, the effect of nano-quartz powders displays as less effective to the Kt of the PMQ due to non-uniform distribution of PZT particles. Nano-quartz piezoelectric cement has higher piezoelectric properties able to monitor and detect concrete structural health.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1406 ◽  
Author(s):  
Yu Fan ◽  
Manuel Collet ◽  
Mohamed Ichchou ◽  
Olivier Bareille ◽  
Lin Li

A novel metrics termed the ‘wave electromechanical coupling factor’ (WEMCF) is proposed in this paper, to quantify the coupling strength between the mechanical and electric fields during the passage of a wave in piezoelectric composites. Two definitions of WEMCF are proposed, leading to a frequency formula and two energy formulas for the calculation of such a factor. The frequency formula is naturally consistent with the conventional modal electromechanical coupling factor (MEMCF) but the implementation is difficult. The energy formulas do not need the complicated wave matching required in the frequency formula, therefore are suitable for computing. We demonstrated that the WEMCF based on the energy formula is consistent with the MEMCF, provided that an appropriate indicator is chosen for the electric energy. In this way, both the theoretical closure and the computational feasibility are achieved. A numerical tool based on the wave and finite element method (WFEM) is developed to implement the energy formulas, and it allows the calculation of WEMCF for complex one-dimensional piezoelectric composites. A reduced model is proposed to accelerate the computing of the wave modes and the energies. The analytical findings and the reduced model are numerically validated against two piezoelectric composites with different complexity. Eventually an application is given, concerning the use of the shunted piezoelectric composite for vibration isolation. A strong correlation among the WEMCF, the geometric parameters and the energy transmission loss are observed. These results confirm that the proposed WEMCF captures the physics of the electromechanical coupling phenomenon associated with the guided waves, and can be used to understand, evaluate and design the piezoelectric composites for a variety of applications.


Sign in / Sign up

Export Citation Format

Share Document