A complete, non-lumped, and verifiable set of upper body segment parameters for three-dimensional dynamic modeling

2011 ◽  
Vol 33 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Albert H. Vette ◽  
Takashi Yoshida ◽  
T. Adam Thrasher ◽  
Kei Masani ◽  
Milos R. Popovic
Author(s):  
Petros Pandis ◽  
Anthony MJ Bull

Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.


Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


2013 ◽  
Vol 796 ◽  
pp. 513-518
Author(s):  
Rong Jin ◽  
Bing Fei Gu ◽  
Guo Lian Liu

In this paper 110 female undergraduates in Soochow University are measured by using 3D non-contact measurement system and manual measurement. 3D point cloud data of human body is taken as research objects by using anti-engineering software, and secondary development of point cloud data is done on the basis of optimizing point cloud data. In accordance with the definition of the human chest width points and other feature points, and in the operability of the three-dimensional point cloud data, the width, thickness, and length dimensions of the curve through the chest width point are measured. Classification of body type is done by choosing the ratio values as classification index which is the ratio between thickness and width of the curve. The generation rules of the chest curve are determined for each type by using linear regression method. Human arm model could be established by the computer automatically. Thereby the individual model of the female upper body mannequin modeling can be improved effectively.


Author(s):  
Osvaldo COSTA MOREIRA ◽  
Cláudia E. PATROCÍNIO DE OLIVEIRA ◽  
Dihogo G. DE MATOS ◽  
Mauro L. MAZINI FILHO ◽  
Sandro FERNANDES DA SILVA ◽  
...  

2001 ◽  
Author(s):  
Dumitru Caruntu ◽  
Mohamed Samir Hefzy

Abstract Most of the anatomical mathematical models that have been developed to study the human knee are either for the tibio-femoral joint (TFJ) or patello-femoral joint (PFJ). Also, most of these models are static or quasistatic, and therefore do not predict the effects of dynamic inertial loads, which occur in many locomotor activities. The only dynamic anatomical model that includes both joints is a two-dimensional model by Tumer and Engin [1]. The model by Abdel-Rahman and Hefzy [2] is the only three dimensional dynamic model for the knee joint available in the literature; yet, it includes only the TFJ and allows only for rigid contact.


2002 ◽  
Vol 82 (3) ◽  
pp. 216-227
Author(s):  
Diane F Borello-France ◽  
Jere D Gallagher ◽  
Joseph M Furman ◽  
Mark S Redfern ◽  
George E Carvell

Abstract Background and Purpose. People with peripheral vestibular pathology demonstrate motor impairments when responding and adapting to postural platform perturbations and during performance of sit-to-stand and locomotor tasks. This study investigated the influence of unilateral peripheral vestibular hypofunction on voluntary arm movement. Subjects and Methods. Subjects without known neurological impairments and subjects with vestibular impairments performed 3 voluntary arm movements: an overhead reach to a target, a sideward reach to a target, and a forward flexion movement through 90 degrees. Subjects performed these tasks under precued and choice reaction time conditions. During all tasks, body segment motion was measured. Head velocity measurements were calculated for the side task only. Results. Subjects with vestibular loss restricted upper body segment motion within the frontal and transverse planes for the 90-degree and overhead tasks. Average angular head velocity was lower for the group with vestibular hypofunction. Task uncertainty (the introduction of a choice reaction time paradigm) differentially influenced the groups regarding head velocity at target acquisition. Discussion and Conclusion. Individuals with vestibular loss altered their performance of voluntary arm movements. Such alterations may have served to minimize the functional consequences of gaze instability.


Sign in / Sign up

Export Citation Format

Share Document