scholarly journals A low-cost three-dimensional laser surface scanning approach for defining body segment parameters

Author(s):  
Petros Pandis ◽  
Anthony MJ Bull

Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.

2021 ◽  
Author(s):  
Pawel Kudzia ◽  
Erika A. Jackson ◽  
Genevieve A. Dumas

Body segment parameters are inputs for a range of applications. The estimation of body segment parameters that are participant-specific is desirable as it requires fewer prior assumptions and can reduce outcome measurement errors. Commonly used methods for estimating participant-specific body segment parameters are either expensive and out of reach (medical imaging), have many underlying assumptions (geometrical modelling) or are based on a specific subset of a population (regression models). Our objective was to develop a participant-specific 3D scanning and body segmentation method that estimates body segment parameters without any assumptions about the geometry of the body, ethnic background, and gender, is low-cost, fast, and can be readily available. Using a Microsoft Kinect camera, we developed a 3D surface scanning protocol that estimated participant-specific body segment parameters. To evaluate our system, we performed repeated 3D scans of 21 healthy participants (10 male, 11 female). We used open-source software to segment each body scan into 16 segments (head, torso, abdomen, pelvis, left and right hand, forearm, upper arm, foot, shank and thigh) and wrote custom software to estimate each segment's mass, mass moment of inertia in the three principal orthogonal axes relevant to the center of the segment, longitudinal length, and center of mass. We compared our body segment parameter estimates to those obtained using two comparison methods and found that our system was consistent in estimating total body volume between repeated scans (male p=0.1194, female p = 0.2240), estimated total body mass without significant differences when compared to our comparison method and a medical scale (male p=0.8529, female p = 0.6339), and generated consistent and comparable estimates across all of the body segment parameters of interest. The work here outlines an inexpensive 3D surface scanning approach for estimating a range of participant-specific body segment parameters.


Author(s):  
Kathrin E Peyer ◽  
Mark Morris ◽  
William I Sellers

Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. These quantities are, however, not directly measurable. Current approaches include using regression models which have limited accuracy; geometric models with lengthy measuring procedures; or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.


Author(s):  
Alison L. Sheets ◽  
Stefano Corazza ◽  
Thomas Andriacchi

Recent studies have suggested that limb kinetics during swing or float phase movements are important for ACL injury analysis and injury prevention [1]. Kinetic (moment and force) calculations during swing phase can be sensitive to the accuracy of subject-specific body segment parameters (BSP) including mass and inertial properties. While numerous methods for estimating BSP have been implemented including regression equations [2,3], geometric body shape estimations, medical imaging and optimization approaches, they all have application specific limitations. Almost all of these BSP estimation approaches are limited by assumptions that: the mass center (CM) lies on the axis connecting the segment’s proximal and distal joint center, the body principle moments of inertia are aligned with the segment axes [4], and the right and left limbs are symmetric. These assumptions could introduce errors in 3D kinematic analysis. Non-invasive methods of measuring the exact geometry and volume of body segments have the potential to reduce most sources of error.


Author(s):  
Kathrin E Peyer ◽  
Mark Morris ◽  
William I Sellers

Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. These quantities are, however, not directly measurable. Current approaches include using regression models which have limited accuracy; geometric models with lengthy measuring procedures; or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


2013 ◽  
Vol 765-767 ◽  
pp. 71-74
Author(s):  
Wen Jiang Li ◽  
Pei Cheng Shi ◽  
Ping Xiao

According to the difficulties of current China's automobile modeling design,a kind of automobile modeling design method based on rapid prototyping technology was put forward.The method has characteristics that are fast modeling,low cost and easy to modify.The main difference from the current automobile modeling design method is to make use of color pictures to establish the bodys three-dimensional CAD model directly and with the use of rapid prototyping technology to make entity model of the body.


2016 ◽  
Vol 39 (7) ◽  
pp. 1037-1046 ◽  
Author(s):  
Hossein Nourmohammadi ◽  
Jafar Keighobadi ◽  
Mohsen Bahrami

Biomedical applications of swimming microrobots comprising of drug delivery, microsurgery and disease monitoring make the research more interesting in MEMS technology. In this paper, inspired by the flagellar motion of microorganisms like bacteria and also considering the recent attempts in one/two-dimensional modelling of swimming microrobots, a three degrees-of-freedom swimming microrobot is developed. In the proposed design, the body of the swimming microrobot is driven by multiple prokaryotic flagella which produce a propulsion force through rotating in the fluid media. The presented swimming microrobot has the capability of doing three-dimensional manoeuvres and moving along three-dimensional reference paths. In this paper, following dynamical modelling of the microrobot motion, a suitable controller is designed for path tracking purposes. Based on the resistive-force theory, the generated propulsion force by the flagella is modelled. The feedback linearization method is applied for perfect tracking control of the swimming microrobot on the desired motion trajectories. It is seen that, by the use of three flagella, the microrobot is able to perform three-dimensional manoeuvres. From the simulation results, the tracking performance of the designed control system is perfectly guaranteed which enables the microrobot to perform the desired three-dimensional manoeuvres and follow the desired trajectory.


2011 ◽  
Vol 33 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Albert H. Vette ◽  
Takashi Yoshida ◽  
T. Adam Thrasher ◽  
Kei Masani ◽  
Milos R. Popovic

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262296
Author(s):  
Pawel Kudzia ◽  
Erika Jackson ◽  
Genevieve Dumas

Body segment parameters are inputs for a range of applications. Participant-specific estimates of body segment parameters are desirable as this requires fewer prior assumptions and can reduce outcome measurement errors. Commonly used methods for estimating participant-specific body segment parameters are either expensive and out of reach (medical imaging), have many underlying assumptions (geometrical modelling) or are based on a specific subset of a population (regression models). Our objective was to develop a participant-specific 3D scanning and body segmentation method that estimates body segment parameters without any assumptions about the geometry of the body, ethnic background, and gender, is low-cost, fast, and can be readily available. Using a Microsoft Kinect Version 2 camera, we developed a 3D surface scanning protocol that enabled the estimation of participant-specific body segment parameters. To evaluate our system, we performed repeated 3D scans of 21 healthy participants (10 male, 11 female). We used open source tools to segment each body scan into 16 segments (head, torso, abdomen, pelvis, left and right hand, forearm, upper arm, foot, shank and thigh) and wrote custom software to estimate each segment’s mass, mass moment of inertia in the three principal orthogonal axes relevant to the center of the segment, longitudinal length, and center of mass. We compared our body segment parameter estimates to those obtained using two comparison methods and found that our system was consistent in estimating total body volume between repeated scans (male p = 0.1194, female p = 0.2240), estimated total body mass without significant differences when compared to our comparison method and a medical scale (male p = 0.8529, female p = 0.6339), and generated consistent and comparable estimates across a range of the body segment parameters of interest. Our work here outlines and provides the code for an inexpensive 3D surface scanning method for estimating a range of participant-specific body segment parameters.


2016 ◽  
Vol 41 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Jorge M Zuniga ◽  
Adam M Carson ◽  
Jean M Peck ◽  
Thomas Kalina ◽  
Rakesh M Srivastava ◽  
...  

Background and aim: The prosthetic options for higher level amputees are limited and costly. Advancements in computer-aided design programs and three-dimensional printing offer the possibility of designing and manufacturing transitional prostheses at very low cost. The aim of this project was to describe an inexpensive three-dimensional printed mechanical shoulder prosthesis to assist a pre-selected subject in performing bi-manual activities. Technique: The main function of the body-powered, manually adjusted three-dimensional printed shoulder prosthesis is to provide a cost-effective, highly customized transitional device to individuals with congenital or acquired forequarter amputations. Discussion: After testing the prototype on a young research participant, a partial correction of the patient’s spinal deviation was noted due to the counterweight of the device. The patient’s family also reported improved balance and performance of some bimanual activities after 2 weeks of using the device. Limitations of the design include low grip strength and low durability. Clinical relevance The prosthetic options for higher level amputees are limited and costly. The low-cost three-dimensional printed shoulder prosthesis described in this study can be used as a transitional device in preparation for a more sophisticated shoulder prosthesis.


Sign in / Sign up

Export Citation Format

Share Document