scholarly journals New finding of peridomestic Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae) in Mexico: Molecular approach using cytochrome B and cytochrome oxidase I

2021 ◽  
pp. 105187
Author(s):  
Fernando Martínez-Hernández ◽  
Guiehdani Villalobos ◽  
Oziel Dante Montañez-Valdez ◽  
José Alejandro Martínez-Ibarra
1995 ◽  
Vol 308 (2) ◽  
pp. 665-671 ◽  
Author(s):  
T P Mayall ◽  
I Bjarnason ◽  
U Y Khoo ◽  
T J Peters ◽  
A J S Macpherson

Most mitochondrial genes are transcribed as a single large transcript from the heavy strand of mitochondrial DNA, and are subsequently processed into the proximal mitochondrial (mt) 12 S and 16 S rRNAs, and the more distal tRNAs and mRNAs. We have shown that in intestinal epithelial biopsies the steady-state levels of mt 12 S and 16 S rRNA are an order of magnitude greater than those of mt mRNAs. Fractionation of rat small intestinal epithelial cells on the basis of their maturity has shown that the greatest ratios of 12 S mt rRNA/cytochrome b mt mRNA or 12 S mt rRNA/cytochrome oxidase I mt mRNA are found in the surface mature enterocytes, with a progressive decrease towards the crypt immature enteroblasts. Cytochrome b and cytochrome oxidase I mt mRNA levels are relatively uniform along the crypt-villus axis, but fractionation experiments showed increased levels in the crypt base. The levels of human mitochondrial transcription factor A are also greater in immature crypt enteroblasts compared with mature villus enterocytes. These results show that the relative levels of mt rRNA and mRNA are distinctly regulated in intestinal epithelial cells according to the crypt-villus position and differentiation status of the cells, and that there are higher mt mRNA and mt TFA levels in the crypts, consistent with increased transcriptional activity during mitochondrial biogenesis in the immature enteroblasts.


2011 ◽  
Vol 102 (1) ◽  
pp. 17-28 ◽  
Author(s):  
M.A. Castalanelli ◽  
A.M. Baker ◽  
K.A. Munyard ◽  
M. Grimm ◽  
D.M. Groth

AbstractTo date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.


1950 ◽  
Vol 183 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Bertram. Eichel ◽  
W.W. Wainio ◽  
P. Person ◽  
S.J. Cooperstein

1973 ◽  
Vol 58 (3) ◽  
pp. 643-649 ◽  
Author(s):  
H. Schmitt ◽  
H. Grossfeld ◽  
U. Z. Littauer

Mitochondria isolated from cysts of Artemia salina (brine shrimp) were found to be devoid of cristae and to possess a low respiratory capability. Hydration of the cysts induces marked biochemical and morphological changes in the mitochondria. Their biogenesis proceeds in two stages. The first stage is completed within 1 h and is characterized by a rapid increase in the respiratory capability of the mitochondria, their cytochrome oxidase, cytochrome b, cytochrome c and perhaps some morphological changes. In the second stage there is an increase in the protein-synthesizing capacity of the mitochondria as well as striking changes in mitochondrial morphology leading to the formation of cristae.


Sign in / Sign up

Export Citation Format

Share Document