Human menstrual blood-derived stem cells combined with a new 3D bioprinted composite scaffold for spinal cord injury treatment

2022 ◽  
pp. 110755
Author(s):  
Wenhua He ◽  
Dingyue Ju ◽  
Yu Gu ◽  
Yan Lua ◽  
Meijuan Ge ◽  
...  
Nano Letters ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 4965-4975 ◽  
Author(s):  
Han Young Kim ◽  
Hemant Kumar ◽  
Min-Jae Jo ◽  
Jonghoon Kim ◽  
Jeong-Kee Yoon ◽  
...  

2018 ◽  
Vol 13 (6) ◽  
pp. 1046 ◽  
Author(s):  
AnaMaria Blanco Martinez ◽  
Bruna dosSantos Ramalho ◽  
FernandaMartins de Almeida ◽  
ConradoMendonça Sales ◽  
Silmara de Lima

2012 ◽  
Vol 35 (3) ◽  
pp. 293-311 ◽  
Author(s):  
D. Garbossa ◽  
M. Boido ◽  
M. Fontanella ◽  
C. Fronda ◽  
A. Ducati ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


2021 ◽  
Vol 116 ◽  
pp. 101978
Author(s):  
Reza Asadi-Golshan ◽  
Vahid Razban ◽  
Esmaeil Mirzaei ◽  
Abdolkarim Rahmanian ◽  
Sahar Khajeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document