Preparation of one-dimensional photonic crystal with variable period by using ultra-high vacuum electron beam evaporation

2007 ◽  
Vol 38 (2) ◽  
pp. 282-284 ◽  
Author(s):  
Su Chen ◽  
Zhitang Song ◽  
Yang Wang ◽  
Duanzheng Yao
2005 ◽  
Vol 239 (3-4) ◽  
pp. 327-334 ◽  
Author(s):  
Ming Zhu ◽  
Peng Chen ◽  
Ricky K.Y. Fu ◽  
Weili Liu ◽  
Chenglu Lin ◽  
...  

1991 ◽  
Vol 237 ◽  
Author(s):  
Yung-Jen Lin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents the results of silicon epitaxial growth on silicon windows surrounded with oxide walls by electron-beam evaporation in an ultra-high vacuum system with a load-lock chamber. The wafer surface was in-situ cleaned in the growth chamber to remove native oxide by thermal desorption at about 840 °C and a base pressure of better than 2 × 10-9 Torr. The growth temperature was 200°C or higher. The pre-epitaxial silicon surface structure was inspected by reflection high energy electron diffraction (RHEED). The influence of the thermal desorption on the quality of the epi/substrate interface and epitaxial layers was studied. In addtion, the deposition parameters which control the epitaxial quality were investigated. The epitaxial films were characterized by cross-sectional trasmission electron microscopy (XTEM) and secondary ion mass spectroscopy (SIMS).


Author(s):  
J. E. O'Neal ◽  
J. J. Bellina ◽  
B. B. Rath

Thin films of the bcc metals vanadium, niobium and tantalum were epitaxially grown on (0001) and sapphire substrates. Prior to deposition, the mechanical polishing damage on the substrates was removed by an in-situ etch. The metal films were deposited by electron-beam evaporation in ultra-high vacuum. The substrates were heated by thermal contact with an electron-bombarded backing plate. The deposition parameters are summarized in Table 1.The films were replicated and examined by electron microscopy and their crystallographic orientation and texture were determined by reflection electron diffraction. Verneuil-grown and Czochralskigrown sapphire substrates of both orientations were employed for each evaporation. The orientation of the metal deposit was not affected by either increasing the density of sub-grain boundaries by about a factor of ten or decreasing the deposition rate by a factor of two. The results on growth epitaxy are summarized in Tables 2 and 3.


Author(s):  
J.T. Fourie

Contamination in electron microscopes can be a serious problem in STEM or in situations where a number of high resolution micrographs are required of the same area in TEM. In modern instruments the environment around the specimen can be made free of the hydrocarbon molecules, which are responsible for contamination, by means of either ultra-high vacuum or cryo-pumping techniques. However, these techniques are not effective against hydrocarbon molecules adsorbed on the specimen surface before or during its introduction into the microscope. The present paper is concerned with a theory of how certain physical parameters can influence the surface diffusion of these adsorbed molecules into the electron beam where they are deposited in the form of long chain carbon compounds by interaction with the primary electrons.


2014 ◽  
Vol 330 ◽  
pp. 135-139 ◽  
Author(s):  
R. Miloua ◽  
Z. Kebbab ◽  
F. Chiker ◽  
M. Khadraoui ◽  
K. Sahraoui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document