The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties

2008 ◽  
Vol 313 (1-2) ◽  
pp. 323-335 ◽  
Author(s):  
Anna M. Comerton ◽  
Robert C. Andrews ◽  
David M. Bagley ◽  
Chunyan Hao
2007 ◽  
Vol 303 (1-2) ◽  
pp. 267-277 ◽  
Author(s):  
Anna M. Comerton ◽  
Robert C. Andrews ◽  
David M. Bagley ◽  
Paul Yang

2013 ◽  
Vol 13 (5) ◽  
pp. 1348-1357 ◽  
Author(s):  
Sabrina Diemert ◽  
Robert C. Andrews

This study assessed the impact of chemical coagulation using alum on the removal of three endocrine-disrupting compounds (EDCs; bisphenol A, clofibric acid and estriol) and nine pharmaceutically active compounds (PhACs; acetaminophen, carbamazepine, diclofenac, gemfibrozil, ketoprofen, naproxen, pentoxifylline, sulfamethoxazole and sulfachloropyridazine). The impact on natural organic matter (NOM) fractions as determined using liquid chromatography–organic carbon detection (LC–OCD; total dissolved organic carbon (DOC), hydrophobic DOC, biopolymers, humic substances, building blocks, low molecular weight neutrals and acids) was also examined. Three test surface waters were included: Lake Ontario, Grand River and Otonabee River water (Ontario, Canada). Gemfibrozil concentrations were reduced in both Otonabee and Grand River waters. Reductions were noted for carbamazepine and (inconsistently) for acetaminophen, and estrone appeared to increase in concentration in Grand River water with increasing alum doses. NOM removal was primarily attributed to the humic fraction, with small reductions in biopolymers in all of the waters studied.


2016 ◽  
Vol 74 (4) ◽  
pp. 904-913 ◽  
Author(s):  
Injeong Kim ◽  
Hyo-Dong Kim ◽  
Tae-Yong Jeong ◽  
Sang Don Kim

This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography–mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.


2018 ◽  
Vol 69 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Monica Ihos ◽  
Corneliu Bogatu ◽  
Carmen Lazau ◽  
Florica Manea ◽  
Rodica Pode

The aim of this study was the investigation of photocatalytic degradation of pharmaceutically active compounds using doped TiO2 functionalized zeolite photocatalyst. Diclofenac (DCF), a non-steroidal anti-inflammatory drug, that represents a biorefractory micropollutant, was chosen as model of pharmaceutically active compound. The photocatalyst was Z-TiO2-Ag. The concentration of DCF in the working solutions was 10 mg/L,50 mg/L,100 mg/L and 200 mg/L and of photocatalyst 1 g/L in any experiments. The process was monitored by recording the UV spectra of the treated solutions and total organic carbon (TOC) determination. The UV spectra analysis and TOC removal proved that along the advanced degradation of DCF also a mineralization process occurred. The carried out research provided useful information envisaging the treatment of pharmaceutical effluents by photocatalysis.


Sign in / Sign up

Export Citation Format

Share Document