Blown powder deposition of 4047 aluminum on 2024 aluminum substrates

2016 ◽  
Vol 7 ◽  
pp. 11-14 ◽  
Author(s):  
Sriram Praneeth Isanaka ◽  
Sreekar Karnati ◽  
Frank Liou
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 720
Author(s):  
Bogdan Antoszewski ◽  
Hubert Danielewski ◽  
Jan Dutkiewicz ◽  
Łukasz Rogal ◽  
Marek St. Węglowski ◽  
...  

This article presents the results of the metal deposition process using additive materials in the form of filler wire and metal powder. An important problem in wire deposition using a CO2 laser was overcome by using a combination of the abovementioned methods. The deposition of a multicomponent alloy—Inconel 625—on a basic substrate such as structural steel is presented. The authors propose a new approach for stopping carbon and iron diffusion from the substrate, by using the Semi-Hybrid Deposition Method (S-HDM) developed by team members. The proposed semi-hybrid method was compared with alternative wire and powder deposition using laser beam. Differences of S-HDM and classic wire deposition and powder deposition methods are presented using metallographic analysis, within optic and electron microscopy. Significant differences in the obtained results reveal advantages of the developed method compared to traditional deposition methods. A comparison of the aforementioned methods performed using nickel based super alloy Inconel 625 deposited on low carbon steel substrate is presented. An alternative prototyping approach for an advanced high alloy materials deposition using CO2 laser, without the requirement of using the same substrate was presented in this article. This study confirmed the established assumption of reducing selected components diffusion from a substrate via buffer layer. Results of metallographic analysis confirm the advantages and application potential of using the new semi-hybrid method for prototyping high alloy materials on low alloy structural steel substrate.


Author(s):  
M. Schneck ◽  
M. Horn ◽  
M. Schmitt ◽  
C. Seidel ◽  
G. Schlick ◽  
...  

AbstractIn this review paper, the authors investigate the state of technology for hybrid- and multi-material (MM) manufacturing of metals utilizing additive manufacturing, in particular powder bed fusion processes. The study consists of three parts, covering the material combinations, the MM deposition devices, and the implications in the process chain. The material analysis is clustered into 2D- and 3D-MM approaches. Based on the reviewed literature, the most utilized material combination is steel-copper, followed by fusing dissimilar steels. Second, the MM deposition devices are categorized into holohedral, nozzle-based as well as masked deposition concepts, and compared in terms of powder deposition rate, resolution, and manufacturing readiness level (MRL). As a third aspect, the implications in the process chain are investigated. Therefore, the design of MM parts and the data preparation for the production process are analyzed. Moreover, aspects for the reuse of powder and finalization of MM parts are discussed. Considering the design of MM parts, there are theoretical approaches, but specific parameter studies or use cases are not present in the literature. Principles for powder separation are identified for exemplary material combinations, but results for further finalization steps of MM parts have not been found. In conclusion, 3D-MM manufacturing has a MRL of 4–5, which indicates that the technology can be produced in a laboratory environment. According to this maturity, several aspects for serial MM parts need to be developed, but the potential of the technology has been demonstrated. Thus, the next important step is to identify lead applications, which benefit from MM manufacturing and hence foster the industrialization of these processes.


2004 ◽  
Author(s):  
Graham Erickson ◽  
Matt Heath ◽  
Bryan Woods ◽  
Daniel Dolan ◽  
Eric Henderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document