Hierarchical and simultaneous utilization of carbon substrates: mechanistic insights, physiological roles, and ecological consequences

2021 ◽  
Vol 63 ◽  
pp. 172-178
Author(s):  
Hiroyuki Okano ◽  
Rutger Hermsen ◽  
Terence Hwa
2019 ◽  
Vol 5 (1) ◽  
pp. 206-215 ◽  
Author(s):  
Hiroyuki Okano ◽  
Rutger Hermsen ◽  
Karl Kochanowski ◽  
Terence Hwa

Author(s):  
T. J. Headley

Oxide phases having the hollandite structure have been identified in multiphase ceramic waste forms being developed for radioactive waste disposal. High resolution studies of phases in the waste forms described in Ref. [2] were initiated to examine them for fine scale structural differences compared to natural mineral analogs. Two hollandites were studied: a (Ba,Cs,K)-titan-ate with minor elements in solution that is produced in the waste forms, and a synthesized BaAl2Ti6O16 phase containing ∼ 4.7 wt% Cs2O. Both materials were consolidated by hot pressing at temperatures above 1100°C. Samples for high resolution microscopy were prepared both by ion-milling (7kV argon ions) and by crushing and dispersing the fragments on holey carbon substrates. The high resolution studies were performed in a JEM 200CX/SEG operating at 200kV.


2016 ◽  
Author(s):  
Matthew G. Powell ◽  
◽  
Ian-Michael Taylor-Benjamin

1994 ◽  
Vol 59 (5) ◽  
pp. 1066-1076 ◽  
Author(s):  
Šárka Klementová ◽  
Dana M. Wagnerová

The influence of ferric ions on photoinitiated reaction of dioxygen with two carbon organic acids, aldehydes and alcohols related to natural waters was demonstrated. Photocatalytic effect of ferric ions, i.e. photochemical reduction of Fe(III) as the catalyst generating step, has been found to be the common principal of these reactions. The overall quantum yields of the reactions are in the range from 0.3 to 1.2. A mathematical model designed for the mechanism of cyclic generation of catalyst in the singlet substrate oxidation by O2 was applied to the system glyoxalic acid + Fe(III); a fair agreement between the simulated and experimental kinetic curves was obtained. The experimental rate constant is 4.4 .10-4 s -1.


Author(s):  
Carl N. Keiser ◽  
James L.L. Lichtenstein ◽  
Colin M. Wright ◽  
Gregory T. Chism ◽  
Jonathan N. Pruitt

The field of animal behavior has experienced a surge of studies focusing on functional differences among individuals in their behavioral tendencies (‘animal personalities’) and the relationships between different axes of behavioral variation (‘behavioral syndromes’). Many important developments in this field have arisen through research using insects and other terrestrial arthropods, in part, because they present the opportunity to test hypotheses not accessible in other taxa. This chapter reviews how studies on insects and spiders have advanced the study of animal personalities by describing the mechanisms underlying the emergence of individual variation and their ecological consequences. Furthermore, studies accounting for animal personalities can expand our understanding of phenomena in insect science like metamorphosis, eusociality, and applied insect behavior. In addition, this chapter serves to highlight some of the most exciting issues at the forefront of our field and to inspire entomologists and behaviorists alike to seek the answers to these questions.


1985 ◽  
Vol 48 ◽  
Author(s):  
P. Alexopoulos ◽  
R. H. Geiss ◽  
M. Schlenker

ABSTRACTThin films of Co-10 at% Pt, ranging from 15 to 90 nm in thickness, have been DC-sputtered at various temperatures on to carbon-coated mica, carbon substrates on copper grids, or (001) silicon single crystals under 3 μm pressure of Ar, using targets of the alloy in the hexagonal phase, at growth rates of 9 nm/min. The samples were investigated by TEM, using bright-and dark-field imaging, lattice imaging, selected area diffraction and both Fresnel and focussed Lorentz modes. The primary structure of the films was found to be hexagonal, with a = 0.255 nm and c = 0.414 nm. For the samples sputtered at room temperature, the grain sizes were on the order of 0.μm on carbon-coated mica and carbon-substrate grids, and approximately an order of magnitude smaller on silicon substrates. Heavy streaking along the [001] of the hexagonal matrix was observed on diffraction patterns for grains having the [001] parallel to the surface; this streaking was found to be associated with the presence of a high density of faults parallel to the (001). In films sputtered on to carbon-coated mica at 225 °C, where a substantial reduction of the coercivity is observed, the overwhelming majority of the grains had the (001) basal plane parallel to the surface. Lorentz microscopy showed the magnetic domain structure in films grown on silicon to be markedly different from those grown on the carbon substrates, and further changes occurred for the films grown at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document