scholarly journals Epstein-Barr virus-infected plasma cells in periodontitis lesions

2020 ◽  
Vol 143 ◽  
pp. 104128
Author(s):  
Charles V. Olivieri ◽  
Hélène Raybaud ◽  
Lilit Tonoyan ◽  
Sarah Abid ◽  
Robert Marsault ◽  
...  
2018 ◽  
Vol 97 (13) ◽  
pp. 1494-1500 ◽  
Author(s):  
H. Raybaud ◽  
C.V. Olivieri ◽  
L. Lupi-Pegurier ◽  
S. Pagnotta ◽  
R. Marsault ◽  
...  

Epstein-Barr virus (EBV), in addition to its transforming properties, contributes to the pathogenesis of several inflammatory diseases. Here, we investigated its involvement in oral lichen planus (OLP), a common autoimmune-like disease of unknown etiopathogenesis that can display a malignant potential. EBV-infected cells (EBV+ cells) were sought in a large series of clinically representative OLPs ( n = 99) through in situ hybridization to detect small noncoding EBV-encoded RNAs. Overall, our results demonstrated that EBV was commonly found in OLP (74%), with significantly higher frequency (83%) in the erosive form than in the reticular/keratinized type mild form (58%). Strikingly, many erosive OLPs were massively infiltrated by large numbers of EBV+ cells, which could represent a large part of the inflammatory infiltrate. Moreover, the number of EBV+ cells in each OLP section significantly correlated with local inflammatory parameters (OLP activity, infiltrate depth, infiltrate density), suggesting a direct relationship between EBV infection and inflammatory status. Finally, we characterized the nature of the infiltrated EBV+ cells by performing detailed immunohistochemistry profiles ( n = 21). Surprisingly, nearly all EBV+ cells detected in OLP lesions were CD138+ plasma cells (PCs) and more rarely CD20+ B cells. The presence of EBV+ PCs in erosive OLP was associated with profound changes in cytokine expression profile; notably, the expression of key inflammatory factors, such as IL1-β and IL8, were specifically increased in OLP heavily infiltrated with EBV+ PCs. Moreover, electron microscopy–based experiments showed that EBV+ PCs actively produced EBV viral particles, suggesting possible amplification of EBV infection within the lesion. Our study thus brings conclusive evidence showing that OLP is commonly infiltrated with EBV+ PCs, adding a further puzzling element to OLP pathogenesis, given that PCs are now considered to be major regulatory immune cells involved in several autoimmune diseases (ClinicalTrials.gov NCT02276573).


Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
Yassine Al Tabaa ◽  
Edouard Tuaillon ◽  
Karine Bollore ◽  
Vincent Foulongne ◽  
Gael Petitjean ◽  
...  

AbstractThe Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes latency in resting memory B lymphocytes, and is involved in oncogenesis through poorly understood mechanisms. The EBV lytic cycle is initiated during plasma cell differentiation by mRNAs transcripts encoded by BZLF1, which induce the synthesis of EBV proteins such as the immediate-early antigen ZEBRA and the late membrane antigen gp350. Therefore, we assessed the capacity of circulating EBV-infected B lymphocytes from healthy EBV-seropositive subjects to enter and complete the EBV lytic cycle. Purified B lymphocytes were polyclonally stimulated and BZLF1- or gp350-secreting cells (BZLF1-SCs or gp350-SCs) were enumerated by ELISpot assays. The number of BZLF1-SCs ranged from 50 to 480/107 lymphocytes (median, 80; 25th-75th percentiles, 70-150) and gp350-SCs from 10 to 40/107 lymphocytes (median, 17; 25th-75th percentiles, 10-20). gp350-SCs represented only 7.7% to 28.6% of BZLF1-SCs (median, 15%; 25th-75th percentiles, 10.5%-20%). This EBV functional reservoir was preferentially restricted to plasma cells derived from CD27+ IgD− memory B lymphocytes. In 9 of 13 subjects, EBV DNA quantification in B-cell culture supernatants gave evidence of completion of EBV lytic cycle. These results demonstrate that EBV proteins can be secreted by EBV-infected B lymphocytes from healthy carriers, a majority generating an abortive EBV lytic cycle and a minority completing the cycle.


1981 ◽  
Vol 153 (2) ◽  
pp. 235-244 ◽  
Author(s):  
J E Robinson ◽  
D Smith ◽  
J Niederman

During the acute phase (1 wk of symptoms or less) of infectious mononucleosis (IM), 70--80% of circulating Epstein-Barr virus nuclear antigen (EBNA)-positive cells have differentiated toward plasma cells. Thus the characteristics of the infected cells in the majority of IM patients during early disease are indistinguishable from EBNA-positive tumor cells of a previously reported child who developed lymphoma during IM. IgA and IgG were the most frequent and IgM the least frequent immunoglobulin isotypes detected in EBNA-positive cells. In acute disease EBNA was present in 5.5--20% of T cell-depleted blood lymphocytes but in the 2nd or 3rd wk of illness the number of EBNA-positive cells sharply decreased to 0.4--1.4%. At the same time the fraction of antigen-positive cells containing cytoplasmic immunoglobulins also diminished, suggesting either that differentiation of infected cells was altered during the disease or that nondifferentiated antigen-positive cells had a survival advantage. Both the high proportion of plasmacytic EBNA-positive cells seen during acute disease and the apparent loss of differentiation by these cells later in disease may be regulated by host immunologic factors. Immunoglobulin-producing EBNA-positive cells may be the source of heterophile antibodies and other seemingly inappropriate antibodies usually found in serum during IM; however, increased numbers of noninfected plasma cells were present in some patients and may also be a potential source of these unusual antibodies.


2020 ◽  
Vol 117 (25) ◽  
pp. 14421-14432
Author(s):  
Thomas Sommermann ◽  
Tomoharu Yasuda ◽  
Jonathan Ronen ◽  
Tristan Wirtz ◽  
Timm Weber ◽  
...  

Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.


2006 ◽  
Vol 80 (14) ◽  
pp. 6764-6770 ◽  
Author(s):  
Michelle Swanson-Mungerson ◽  
Rebecca Bultema ◽  
Richard Longnecker

ABSTRACT Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system.


2005 ◽  
Vol 79 (2) ◽  
pp. 1296-1307 ◽  
Author(s):  
Lauri L. Laichalk ◽  
David A. Thorley-Lawson

ABSTRACT In this paper we demonstrate that the cells which initiate replication of Epstein-Barr virus (EBV) in the tonsils of healthy carriers are plasma cells (CD38hi, CD10−, CD19+, CD20lo, surface immunoglobulin negative, and cytoplasmic immunoglobulin positive). We further conclude that differentiation into plasma cells, and not the signals that induce differentiation, initiates viral replication. This was confirmed by in vitro studies showing that the promoter for BZLF1, the gene that begins viral replication, becomes active only after memory cells differentiate into plasma cells and is also active in plasma cell lines. This differs from the reactivation of BZLF1 in vitro, which occurs acutely and is associated with apoptosis and not with differentiation. We suggest that differentiation and acute stress represent two distinct pathways of EBV reactivation in vivo. The fraction of cells replicating the virus decreases as the cells progress through the lytic cycle such that only a tiny fraction actually release infectious virus. This may reflect abortive replication or elimination of cells by the cellular immune response. Consistent with the later conclusion, the cells did not down regulate major histocompatibility complex class I molecules, suggesting that this is not an immune evasion tactic used by EBV and that the cells remain vulnerable to cytotoxic-T-lymphocyte attack.


2008 ◽  
Vol 453 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Satoko Kashiwagi ◽  
Toshio Kumasaka ◽  
Nobukawa Bunsei ◽  
Yuki Fukumura ◽  
Shigetaka Yamasaki ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. e466 ◽  
Author(s):  
Monica A. Moreno ◽  
Noga Or-Geva ◽  
Blake T. Aftab ◽  
Rajiv Khanna ◽  
Ed Croze ◽  
...  

ObjectiveWe sought to confirm the presence and frequency of B cells and Epstein-Barr virus (EBV) (latent and lytic phase) antigens in archived MS and non-MS brain tissue by immunohistochemistry.MethodsWe quantified the type and location of B-cell subsets within active and chronic MS brain lesions in relation to viral antigen expression. The presence of EBV-infected cells was further confirmed by in situ hybridization to detect the EBV RNA transcript, EBV-encoded RNA-1 (EBER-1).ResultsWe report the presence of EBV latent membrane protein 1 (LMP-1) in 93% of MS and 78% of control brains, with a greater percentage of MS brains containing CD138+ plasma cells and LMP-1–rich populations. Notably, 78% of chronic MS lesions and 33.3% of non-MS brains contained parenchymal CD138+ plasma cells. EBV early lytic protein, EBV immediate-early lytic gene (BZLF1), was also observed in 46% of MS, primarily in association with chronic lesions and 44% of non-MS brain tissue. Furthermore, 85% of MS brains revealed frequent EBER-positive cells, whereas non-MS brains seldom contained EBER-positive cells. EBV infection was detectable, by immunohistochemistry and by in situ hybridization, in both MS and non-MS brains, although latent virus was more prevalent in MS brains, while lytic virus was restricted to chronic MS lesions.ConclusionsTogether, our observations suggest an uncharacterized link between the EBV virus life cycle and MS pathogenesis.


2007 ◽  
Vol 204 (12) ◽  
pp. 2899-2912 ◽  
Author(s):  
Barbara Serafini ◽  
Barbara Rosicarelli ◽  
Diego Franciotta ◽  
Roberta Magliozzi ◽  
Richard Reynolds ◽  
...  

Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, has been associated with multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS), but direct proof of its involvement in the disease is still missing. To test the idea that MS might result from perturbed EBV infection in the CNS, we investigated expression of EBV markers in postmortem brain tissue from MS cases with different clinical courses. Contrary to previous studies, we found evidence of EBV infection in a substantial proportion of brain-infiltrating B cells and plasma cells in nearly 100% of the MS cases examined (21 of 22), but not in other inflammatory neurological diseases. Ectopic B cell follicles forming in the cerebral meninges of some cases with secondary progressive MS were identified as major sites of EBV persistence. Expression of viral latent proteins was regularly observed in MS brains, whereas viral reactivation appeared restricted to ectopic B cell follicles and acute lesions. Activation of CD8+ T cells with signs of cytotoxicity toward plasma cells was also noted at sites of major accumulations of EBV-infected cells. Whether homing of EBV-infected B cells to the CNS is a primary event in MS development or the consequence of a still unknown disease-related process, we interpret these findings as evidence that EBV persistence and reactivation in the CNS play an important role in MS immunopathology.


Sign in / Sign up

Export Citation Format

Share Document