A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli

2008 ◽  
Vol 73 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Arshad Khan ◽  
Dhiman Sarkar
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Byung Chul Yeo ◽  
Hyunji Nam ◽  
Hyobin Nam ◽  
Min-Cheol Kim ◽  
Hong Woo Lee ◽  
...  

AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39961 ◽  
Author(s):  
Anuradha Kumar ◽  
Meng Zhang ◽  
Linyun Zhu ◽  
Reiling P. Liao ◽  
Charles Mutai ◽  
...  

2009 ◽  
Vol 75 (14) ◽  
pp. 4711-4719 ◽  
Author(s):  
Janna Shainsky ◽  
Netta-Lee Derry ◽  
Yael Leichtmann-Bardoogo ◽  
Thomas K. Wood ◽  
Ayelet Fishman

ABSTRACT Enantiopure sulfoxides are prevalent in drugs and are useful chiral auxiliaries in organic synthesis. The biocatalytic enantioselective oxidation of prochiral sulfides is a direct and economical approach for the synthesis of optically pure sulfoxides. The selection of suitable biocatalysts requires rapid and reliable high-throughput screening methods. Here we present four different methods for detecting sulfoxides produced via whole-cell biocatalysis, three of which were exploited for high-throughput screening. Fluorescence detection based on the acid activation of omeprazole was utilized for high-throughput screening of mutant libraries of toluene monooxygenases, but no active variants have been discovered yet. The second method is based on the reduction of sulfoxides to sulfides, with the coupled release and measurement of iodine. The availability of solvent-resistant microtiter plates enabled us to modify the method to a high-throughput format. The third method, selective inhibition of horse liver alcohol dehydrogenase, was used to rapidly screen highly active and/or enantioselective variants at position V106 of toluene ortho-monooxygenase in a saturation mutagenesis library, using methyl-p-tolyl sulfide as the substrate. A success rate of 89% (i.e., 11% false positives) was obtained, and two new mutants were selected. The fourth method is based on the colorimetric detection of adrenochrome, a back-titration procedure which measures the concentration of the periodate-sensitive sulfide. Due to low sensitivity during whole-cell screening, this method was found to be useful only for determining the presence or absence of sulfoxide in the reaction. The methods described in the present work are simple and inexpensive and do not require special equipment.


2013 ◽  
Vol 19 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Juan Wang ◽  
Han Cheng ◽  
Kiira Ratia ◽  
Elizabeth Varhegyi ◽  
William G. Hendrickson ◽  
...  

Emerging and reemerging human viral pathogens pose great public health concerns since therapeutics against these viruses are limited. Thus, there is an urgent need to develop novel drugs that can block infection of either a specific virus or a number of viruses. Viral entry is thought to be an ideal target for potential therapeutic prevention. One of the challenges of developing antivirals is that most of these viruses are highly pathogenic and therefore require high biosafety-level containment. In this study, we have adopted a comparative high-throughput screening protocol to identify entry inhibitors for three enveloped viruses (Marburg virus, influenza virus H5N1, and Lassa virus) using a human immunodeficiency virus–based pseudotyping platform. We demonstrate the utility of this approach by screening a small compound library and identifying putative entry inhibitors for these viruses. One major advantage of this protocol is to reduce the number of false positives in hit selection, and we believe that the protocol is useful for inhibitor screening for many enveloped viruses.


2009 ◽  
Vol 77 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Shaun P. Brothers ◽  
S. Adrian Saldanha ◽  
Timothy P. Spicer ◽  
Michael Cameron ◽  
Becky A. Mercer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document