Characterization of Escherichia coli O3 and O21 O antigen gene clusters and development of serogroup-specific PCR assays

2008 ◽  
Vol 75 (2) ◽  
pp. 329-334 ◽  
Author(s):  
Yi Ren ◽  
Bin Liu ◽  
Jiansong Cheng ◽  
Fenxia Liu ◽  
Lu Feng ◽  
...  
2011 ◽  
Vol 77 (12) ◽  
pp. 4017-4026 ◽  
Author(s):  
K. G. Jarvis ◽  
C. J. Grim ◽  
A. A. Franco ◽  
G. Gopinath ◽  
V. Sathyamoorthy ◽  
...  

ABSTRACTCronobacter(formerlyEnterobacter sakazakii) is a recently defined genus consisting of six species,C. sakazakii,C. malonaticus,C. dublinensis,C. muytjensii,C. turicensis, andCronobactergenomospecies 1. In this study, MboII restriction fragment length polymorphism (RFLP) patterns of O-antigen gene clusters, located betweengalFandgnd, were used to identify serotypes inCronobacterspp. Seven O-antigen RFLP clusters were generated, including threeC. sakazakiiclusters, previously identified as serotypes O1, O2, and O3. The O-antigen regions of six strains with unique RFLP patterns, including twoC. sakazakiistrains, twoC. malonaticusstrains, oneC. turicensisstrain, and oneC. muytjensiistrain, revealed three O-antigen gene clusters shared amongCronobacterspecies. PCR assays were developed, targeting thewzxO-antigen polymerase gene, and used to screen 231Cronobacterstrains to determine the frequency of these newly identified serotypes.


2010 ◽  
Vol 56 (4) ◽  
pp. 308-316 ◽  
Author(s):  
Pina M. Fratamico ◽  
Xianghe Yan ◽  
Yanhong Liu ◽  
Chitrita DebRoy ◽  
Brian Byrne ◽  
...  

The O-antigen gene clusters of Escherichia coli serogroups O2 and O28ac were sequenced, and PCR assays were developed to identify strains belonging to these 2 serogroups. Sixteen and 8 open reading frames were mapped to these loci in E. coli O2:H4 U 9-41 and E. coli O28ac:H25 96-3286, respectively. The wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes in the E. coli O2 and O28ac O-antigen gene clusters were selected as targets for PCR assays for their identification. PCR assays targeting the wzx and wzy genes were specific for these serogroups, with one exception. Escherichia coli serogroup O42 strains gave positive results with wzx and wzy PCR assays targeting E. coli O28ac, and antiserum raised against O42 cross-reacted with serogroup O28ac strains. The O-antigen gene cluster of a strain of E. coli serogroup O42 was sequenced, and there were only 3 nt differences between the O-antigen gene clusters of the O28ac and O42 strains. Multiplex PCR assays targeting the O2 wzx gene, the stx1, stx2, hly, eae, and saa genes, and the O28ac wzx, ial, ipaC, and ipaH genes were developed for detecting Shiga toxin-producing E. coli O2 strains and enteroinvasive E. coli O28ac strains, respectively. The O2 and O28ac wzx and wzy genes can be used as diagnostic markers in PCR assays for rapid identification of these serogroups as an alternative to serotyping, and the multiplex PCR assays targeting serogroup-specific genes in combination with virulence genes can be used to identify and to detect pathogenic serogroup O2 and O28ac strains.


2005 ◽  
Vol 71 (8) ◽  
pp. 4919-4924 ◽  
Author(s):  
Chitrita DebRoy ◽  
Pina M. Fratamico ◽  
Elisabeth Roberts ◽  
Michael A. Davis ◽  
Yanhong Liu

ABSTRACT The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 106 and 108 CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.


2009 ◽  
Vol 58 (7) ◽  
pp. 884-894 ◽  
Author(s):  
Clifford G. Clark ◽  
Andrew M. Kropinski ◽  
Haralambos Parolis ◽  
Christopher C. R. Grant ◽  
Keri M. Trout-Yakel ◽  
...  

The serotyping of O and H antigens is an important first step in the characterization of Salmonella enterica. However, serotyping has become increasingly technically demanding and expensive to perform. We have therefore sequenced additional S. enterica O antigen gene clusters to provide information for the development of DNA-based serotyping methods. Three S. enterica isolates had O antigen gene clusters with homology to the Escherichia coli O123 O antigen region. O antigen clusters from two serogroup O58 S. enterica strains had approximately 85 % identity with the E. coli O123 O antigen region over their entire length, suggesting that these Salmonella and E. coli O antigen regions evolved from a common ancestor. The O antigen cluster of a Salmonella serogroup O41 isolate had a lower level of identity with E. coli O123 over only part of its O antigen DNA cluster sequence, suggesting a different and more complex evolution of this gene cluster than those in the O58 strains. A large part of the Salmonella O41 O antigen DNA cluster had very close identity with the O antigen cluster of an O62 strain. This region of DNA homology included the wzx and wzy genes. Therefore, molecular serotyping tests using only the O41 or O62 wzx and wzy genes would not differentiate between the two serogroups. The E. coli O123 O-antigenic polysaccharide and its repeating unit were characterized, and the chemical structure for E. coli O123 was entirely consistent with the O antigen gene cluster sequences of E. coli O123 and the Salmonella O58 isolates. An understanding of both the genetic and structural composition of Salmonella and E. coli O antigens is necessary for the development of novel molecular methods for serotyping these organisms.


2019 ◽  
Vol 44 (6) ◽  
pp. 655-683 ◽  
Author(s):  
Bin Liu ◽  
Axel Furevi ◽  
Andrei V Perepelov ◽  
Xi Guo ◽  
Hengchun Cao ◽  
...  

ABSTRACT Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.


2010 ◽  
Vol 76 (16) ◽  
pp. 5471-5478 ◽  
Author(s):  
Quan Wang ◽  
Agnieszka Torzewska ◽  
Xiaojuan Ruan ◽  
Xiaoting Wang ◽  
Antoni Rozalski ◽  
...  

ABSTRACT Proteus species are well-characterized opportunistic pathogens primarily associated with urinary tract infections (UTI) of humans. The Proteus O antigen is one of the most variable constituents of the cell surface, and O antigen heterogeneity is used for serological classification of Proteus isolates. Even though most Proteus O antigen structures have been identified, the O antigen locus has not been well characterized. In this study, we identified the putative Proteus O antigen locus and demonstrated this region's high degree of heterogeneity by comparing sequences of 40 Proteus isolates using PCR-restriction fragment length polymorphism (RFLP). This analysis identified five putative Proteus O antigen gene clusters, and the probable functions of these O antigen-related genes were proposed, based on their similarity to genes in the available databases. Finally, Proteus-specific genes from these five serogroups were identified by screening 79 strains belonging to the 68 Proteus O antigen serogroups. To our knowledge, this is the first molecular characterization of the putative Proteus O antigen locus, and we describe a novel molecular classification method for the identification of different Proteus serogroups.


Author(s):  
Sabine Delannoy ◽  
Lothar Beutin ◽  
Patricia Mariani-Kurkdjian ◽  
Aubin Fleiss ◽  
Stéphane Bonacorsi ◽  
...  

2002 ◽  
Vol 184 (10) ◽  
pp. 2620-2625 ◽  
Author(s):  
Lei Wang ◽  
Sandy Huskic ◽  
Adam Cisterne ◽  
Deborah Rothemund ◽  
Peter R. Reeves

ABSTRACT Escherichia coli O55 is an important antigen which is often associated with enteropathogenic E. coli clones. We sequenced the genes responsible for its synthesis and identified genes for O-antigen polymerase, O-antigen flippase, four enzymes involved in GDP-colitose synthesis, and three glycosyltransferases, all by comparison with known genes. Upstream of the normal O-antigen region there is a gne gene, which encodes a UDP-GlcNAc epimerase for converting UDP-GlcNAc to UDP-GalNAc and is essential for O55 antigen synthesis. The O55 gne product has only 20 and 26% identity to the gne genes of Pseudomonas aeruginosa and E. coli O113, respectively. We also found evidence for the O55 gene cluster's having evolved from another gene cluster by gain and loss of genes. Only three of the GDP-colitose pathway genes are in the usual location, the other two being separated, although nearby. It is thought that the E. coli O157:H7 clone evolved from the O55:H7 clone in part by transfer of the O157 gene cluster into an O55 lineage. Comparison of genes flanking the O-antigen gene clusters of the O55:H7 and O157:H7 clones revealed one recombination site within the galF gene and located the other between the hisG and amn genes. Genes outside the recombination sites are 99.6 to 100% identical in the two clones, while most genes thought to have transferred with the O157 gene cluster are 95 to 98% identical.


Sign in / Sign up

Export Citation Format

Share Document