scholarly journals Amino acid efflux by asexual blood-stage Plasmodium falciparum and its utility in interrogating the kinetics of hemoglobin endocytosis and catabolism in vivo

2015 ◽  
Vol 201 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Seema Dalal ◽  
Michael Klemba
2013 ◽  
Vol 4 ◽  
Author(s):  
Douglas Alexander ◽  
Williams Andrew ◽  
Illingworth Joseph ◽  
Hjerrild Kathryn ◽  
Draper Simon

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235798
Author(s):  
Margarida Ressurreição ◽  
James A. Thomas ◽  
Stephanie D. Nofal ◽  
Christian Flueck ◽  
Robert W. Moon ◽  
...  

1990 ◽  
Vol 28 (4) ◽  
pp. 516-521 ◽  
Author(s):  
Faye S. Silverstein ◽  
Jennifer Simpson ◽  
Kevin E. Gordon

2013 ◽  
Vol 57 (12) ◽  
pp. 6050-6062 ◽  
Author(s):  
Leonardo Lucantoni ◽  
Sandra Duffy ◽  
Sophie H. Adjalley ◽  
David A. Fidock ◽  
Vicky M. Avery

ABSTRACTThe design of new antimalarial combinations to treatPlasmodium falciparuminfections requires drugs that, in addition to resolving disease symptoms caused by asexual blood stage parasites, can also interrupt transmission to the mosquito vector. Gametocytes, which are essential for transmission, develop as sexual blood stage parasites in the human host over 8 to 12 days and are the most accessible developmental stage for transmission-blocking drugs. Considerable effort is currently being devoted to identifying compounds active against mature gametocytes. However, investigations on the drug sensitivity of developing gametocytes, as well as screening methods for identifying inhibitors of early gametocytogenesis, remain scarce. We have developed a luciferase-based high-throughput screening (HTS) assay using tightly synchronous stage I to III gametocytes from a recombinantP. falciparumline expressing green fluorescent protein (GFP)-luciferase. The assay has been used to evaluate the early-stage gametocytocidal activity of the MMV Malaria Box, a collection of 400 compounds with known antimalarial (asexual blood stage) activity. Screening this collection against early-stage (I to III) gametocytes yielded 64 gametocytocidal compounds with 50% inhibitory concentrations (IC50s) below 2.5 μM. This assay is reproducible and suitable for the screening of large compound libraries, with an average percent coefficient of variance (%CV) of ≤5%, an average signal-to-noise ratio (S:N) of >30, and a Z′ of ∼0.8. Our findings highlight the need for screening efforts directed specifically against early gametocytogenesis and indicate the importance of experimental verification of early-stage gametocytocidal activity in the development of new antimalarial candidates for combination therapy.


1992 ◽  
Vol 47 (5) ◽  
pp. 614-620 ◽  
Author(s):  
Tsuyoshi Nagatake ◽  
Masamichi Aikawa ◽  
William E. Collins ◽  
J. Roger Broderson ◽  
Tatsuya Tegoshi

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Philip L. Felgner ◽  
Meta Roestenberg ◽  
Li Liang ◽  
Christopher Hung ◽  
Aarti Jain ◽  
...  

Abstract Complete sterile protection to Plasmodium falciparum (Pf) infection mediated by pre-erythrocytic immunity can be experimentally induced under chloroquine prophylaxis, through immunization with sporozoites from infected mosquitoes' bites (CPS protocol). To characterize the profile of CPS induced antibody (Ab) responses, we developed a proteome microarray containing 809 Pf antigens showing a distinct Ab profile with recognition of antigens expressed in pre-erythrocytic life-cycle stages. In contrast, plasma from naturally exposed semi-immune individuals from Kenya was skewed toward antibody reactivity against asexual blood stage antigens. CPS-immunized and semi-immune individuals generated antibodies against 192 and 202 Pf antigens, respectively, but only 60 antigens overlapped between the two groups. Although the number of reactive antigens varied between the CPS-immunized individuals, all volunteers reacted strongly against the pre-erythrocytic antigens circumsporozoite protein (CSP) and liver stage antigen 1 (LSA1). Well classified merozoite and erythrocytic antigens were strongly reactive in semi-immune individuals but lacking in the CPS immunized group. These data show that the antibody profile of CPS-immunized and semi-immune groups have quite distinct profiles reflecting their protective immunity; antibodies from CPS immunized individuals react strongly against pre-erythrocytic while semi-immune individuals mainly react against erythrocytic antigens.


2019 ◽  
Author(s):  
Pengxing Cao ◽  
Katharine A. Collins ◽  
Sophie Zaloumis ◽  
Thanaporn Wattanakul ◽  
Joel Tarning ◽  
...  

AbstractEvery year over two hundred million people are infected with the malaria parasite. Renewed efforts to eliminate malaria has highlighted the potential to interrupt transmission from humans to mosquitoes which is mediated through the gametocytes. Reliable prediction of transmission requires an improved understanding of in vivo kinetics of gametocytes. Here we study the population dynamics of Plasmodium falciparum gametocytes in human hosts by establishing a framework which incorporates improved measurements of parasitaemia in humans, a novel mathematical model of gametocyte dynamics, and model validation using a Bayesian hierarchical inference method. We found that the novel mathematical model provides an excellent fit to the available clinical data from 17 volunteers infected with P. falciparum, and reliably predicts observed gametocyte levels. We estimated the P. falciparum’s sexual commitment rate and gametocyte sequestration time in humans to be 0.54% (95% credible interval: 0.30-1.00) per life cycle and 8.39 (6.54-10.59) days respectively. Furthermore, we used the data-calibrated model to predict the effects of those gametocyte dynamics parameters on human-to-mosquito transmissibility, providing a method to link within-human host kinetics of malaria infection to epidemiological-scale infection and transmission patterns.


Sign in / Sign up

Export Citation Format

Share Document