A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions

2006 ◽  
Vol 257 (1-2) ◽  
pp. 149-153 ◽  
Author(s):  
Michele Aresta ◽  
Angela Dibenedetto ◽  
Francesco Nocito ◽  
Carlo Pastore
Author(s):  
Matheus Tavares ◽  
Luís Kanda ◽  
Wanderson Giacomin Júnior ◽  
Luiz Ramos ◽  
Luciana Vandenberghe ◽  
...  

This work provides a general insight on lipase-catalyzed synthesis of geranyl acetate through esterification of geraniol with acetic acid. Although this reaction is relatively well known, the replacement of organic solvents by supercritical fluids is fairly recent and the role of CO2 is still not completely understood. Therefore, reactions were performed with Lipozyme® RM IM and Novozym® 435 as biocatalysts, and hexane and CO2 as solvents. For similar reaction conditions, geraniol conversions obtained using hexane were much higher, rather than supercritical CO2 (scCO2, 82.9% versus 12.0% after 4 h). The results obtained indicated that CO2 might help the migration of water from the enzyme surface to reaction bulk and then to the vapor phase. Thus, by increasing the vapor phase extension, the geraniol conversion enhanced to 60.5% after 4 h. Such improvement represents one step forward to comprehend the influence of CO2, a safer and greener solvent as compared to hexane.


2019 ◽  
Vol 20 (14) ◽  
pp. 1156-1162
Author(s):  
Maria Yousuf ◽  
Waqas Jamil ◽  
Khayala Mammadova

The methods of chemical structural alteration of small organic molecules by using microbes (fungi, bacteria, yeast, etc.) are gaining tremendous attention to obtain structurally novel and therapeutically potential leads. The regiospecific mild environmental friendly reaction conditions with the ability of novel chemical structural modification in compounds categorize this technique; a distinguished and unique way to obtain medicinally important drugs and their in vivo mimic metabolites with costeffective and timely manner. This review article shortly addresses the immense pharmaceutical importance of microbial transformation methods in drug designing and development as well as the role of CYP450 enzymes in fungi to obtain in vivo drug metabolites for toxicological studies.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2121-2133
Author(s):  
Chao Zhang ◽  
Chenxi Cao ◽  
Yulong Zhang ◽  
Xianglin Liu ◽  
Jing Xu ◽  
...  

Synlett ◽  
2021 ◽  
Author(s):  
Kripa Subramanian ◽  
Subhash L. Yedage ◽  
Kashish Sethi ◽  
Bhalchandra M. Bhanage

An electrochemical method for the synthesis of phenanthridinones via constant potential electrolysis (CPE) mediated by <i>n</i>-Bu<sub>4</sub>NI (TBAI) has been reported. The protocol is metal and oxidant free and proceeds with 100% current efficiency. Here TBAI plays the dual role of the redox catalyst as well as supporting electrolyte. The intramolecular C-H activation proceeds under mild reaction conditions and short reaction time via electrochemically generated amidyl radicals. The reaction has been scaled up to gram level showing its practicability and the synthetic utility and applicability of the protocol has been demonstrated by the direct one-step synthesis of the bioactive compound Phenaglaydon.


Synthesis ◽  
2020 ◽  
Author(s):  
Jeong Kyun Im ◽  
Ilju Jeong ◽  
Jun-Ho Choi ◽  
Won-jin Chung ◽  
ByeongDo Yang ◽  
...  

AbstractAn unprecedented N-chlorinative ring contraction of 1,2-diazines was discovered and investigated with an electrophilic chlorinating reagent, trichloroisocyanuric acid (TCICA). Through optimization and mechanistic analysis, the assisting role of n-Bu4NCl as an exogenous nucleophile was identified, and the optimized reaction conditions were applied to a range of 1,4-dimethoxyphthalazine derivatives. Also, an improvement of overall efficiency was demonstrated by the use of a labile O-silyl group. A bicyclization/ring-opening mechanism, inspired by the Favorskii rearrangement, was proposed and supported by the DFT calculations. Furthermore, the efforts on scope expansion as well as the evaluation of other electrophilic promoters revealed that the newly developed ring contraction reactivity is a unique characteristic of 1,4-dimethoxyphthalazine scaffold and TCICA.


2020 ◽  
Vol 40 ◽  
pp. 156-170 ◽  
Author(s):  
Ping Shao ◽  
Luocai Yi ◽  
Shumei Chen ◽  
Tianhua Zhou ◽  
Jian Zhang

Sign in / Sign up

Export Citation Format

Share Document