scholarly journals Identification of a MicroRNA that Activates Gene Expression by Repressing Nonsense-Mediated RNA Decay

2011 ◽  
Vol 42 (4) ◽  
pp. 500-510 ◽  
Author(s):  
Ivone G. Bruno ◽  
Rachid Karam ◽  
Lulu Huang ◽  
Anjana Bhardwaj ◽  
Chih H. Lou ◽  
...  
BioEssays ◽  
2015 ◽  
Vol 37 (6) ◽  
pp. 612-623 ◽  
Author(s):  
Jenna E. Smith ◽  
Kristian E. Baker

2008 ◽  
Vol 28 (11) ◽  
pp. 3729-3741 ◽  
Author(s):  
Lawrence B. Gardner

ABSTRACT Nonsense-mediated RNA decay (NMD) rapidly degrades both mutated mRNAs and nonmutated cellular mRNAs in what is thought to be a constitutive fashion. Here we demonstrate that NMD is inhibited in hypoxic cells and that this inhibition is dependent on phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). eIF2α phosphorylation is known to promote translational and transcriptional up-regulation of genes important for the cellular response to stress. We show that the mRNAs of several of these stress-induced genes are NMD targets and that the repression of NMD stabilizes these mRNAs, thus demonstrating that the inhibition of NMD augments the cellular stress response. Furthermore, hypoxia-induced formation of cytoplasmic stress granules is also dependent on eIF2α phosphorylation, and components of the NMD pathway are relocalized to these granules in hypoxic cells, providing a potential mechanism for the hypoxic inhibition of NMD. Our demonstration that NMD is inhibited in hypoxic cells reveals that the regulation of NMD can dynamically alter gene expression and also establishes a novel mechanism for hypoxic gene regulation.


2011 ◽  
Vol 31 (17) ◽  
pp. 3670-3680 ◽  
Author(s):  
D. Wang ◽  
J. Zavadil ◽  
L. Martin ◽  
F. Parisi ◽  
E. Friedman ◽  
...  

2021 ◽  
Author(s):  
Rui Fu ◽  
Kimberly Wellman ◽  
Amber Baldwin ◽  
Juilee Rege ◽  
Kathryn Walters ◽  
...  

ABSTRACTAngiotensin II (AngII) binds to the type I angiotensin receptor in the adrenal cortex to initiate a cascade of events leading to the production of aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in our knowledge related to precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate siRNA screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. Together, these data support a model in which coordinated increases in transcription and regulated RNA decay facilitates the major transcriptomic changes required to implement a pro-steroidogenic gene expression program that is temporally restricted to prevent aldosterone overproduction.


2020 ◽  
Vol 32 (9) ◽  
pp. 2725-2741 ◽  
Author(s):  
Vivek K. Raxwal ◽  
Craig G. Simpson ◽  
Jiradet Gloggnitzer ◽  
Juan Carlos Entinze ◽  
Wenbin Guo ◽  
...  

PLoS Genetics ◽  
2012 ◽  
Vol 8 (10) ◽  
pp. e1003000 ◽  
Author(s):  
Athma A. Pai ◽  
Carolyn E. Cain ◽  
Orna Mizrahi-Man ◽  
Sherryl De Leon ◽  
Noah Lewellen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document