scholarly journals Regulation of a Eukaryotic Gene by GTP-Dependent Start Site Selection and Transcription Attenuation

2019 ◽  
Vol 74 (3) ◽  
pp. 634 ◽  
Author(s):  
Jason N. Kuehner ◽  
David A. Brow
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhe Sun ◽  
Alexander V. Yakhnin ◽  
Peter C. FitzGerald ◽  
Carl E. Mclntosh ◽  
Mikhail Kashlev

AbstractPromoter-proximal pausing regulates eukaryotic gene expression and serves as checkpoints to assemble elongation/splicing machinery. Little is known how broadly this type of pausing regulates transcription in bacteria. We apply nascent elongating transcript sequencing combined with RNase I footprinting for genome-wide analysis of σ70-dependent transcription pauses in Escherichia coli. Retention of σ70 induces strong backtracked pauses at a 10−20-bp distance from many promoters. The pauses in the 10−15-bp register of the promoter are dictated by the canonical −10 element, 6−7 nt spacer and “YR+1Y” motif centered at the transcription start site. The promoters for the pauses in the 16−20-bp register contain an additional −10-like sequence recognized by σ70. Our in vitro analysis reveals that DNA scrunching is involved in these pauses relieved by Gre cleavage factors. The genes coding for transcription factors are enriched in these pauses, suggesting that σ70 and Gre proteins regulate transcription in response to changing environmental cues.


2015 ◽  
Vol 44 (3) ◽  
pp. 1080-1094 ◽  
Author(s):  
Nadav Marbach-Bar ◽  
Anat Bahat ◽  
Shaked Ashkenazi ◽  
Michal Golan-Mashiach ◽  
Ora Haimov ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (19) ◽  
pp. 3887-3894 ◽  
Author(s):  
E.S. Casey ◽  
M.A. O'Reilly ◽  
F.L. Conlon ◽  
J.C. Smith

Brachyury is a member of the T-box gene family and is required for formation of posterior mesoderm and notochord during vertebrate development. The ability of Brachyury to activate transcription is essential for its biological function, but nothing is known about its target genes. Here we demonstrate that Xenopus Brachyury directly regulates expression of eFGF by binding to an element positioned approximately 1 kb upstream of the eFGF transcription start site. This site comprises half of the palindromic sequence previously identified by binding site selection and is also present in the promoters of the human and mouse homologues of eFGF.


Sign in / Sign up

Export Citation Format

Share Document