Partial molar adiabatic compressibilities of transfer of some amino acids from water to aqueous lactose solutions at different temperatures

2011 ◽  
Vol 162 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Amalendu Pal ◽  
Nalin Chauhan
2017 ◽  
Vol 113 ◽  
pp. 388-393 ◽  
Author(s):  
Yu Chen ◽  
Ranran Fu ◽  
Jingjing Xu ◽  
Wenting Du ◽  
Xu Wang ◽  
...  

Author(s):  
S. Parimala Vaijayanthi ◽  
N. Mathiyalagan

The kinetics of oxidation of amino acids namely, alanine, glycine, leucine, phenyl alanine and valine by N-chloropyrazinamide (NCPZA) in aqueous acetic acid medium in the presence of hydrochloric acid have been investigated. The observed rate of oxidation is first order in [NCPZA], [H+] and [Clˉ]. The order with respect to [amino acid] is zero. The rate of oxidation increases with increase in the percentage of acetic acid. The reaction rate increases slightly with increase in ionic strength, while retards with addition of pyrazinamide. Arrhenius and thermodynamic activation parameters have been evaluated from Arrhenius plot by studying the reaction at different temperatures. A most probable reaction mechanism has been proposed and an appropriate rate law is deduced toaccount for the observed kinetic data.


2019 ◽  
pp. 1412-1422
Author(s):  
Muhammed J. Kadhim

Molar conductance (Λ) of ionizable side chains amino acids, lysine (Lys) and arginine (Arg) with dehydroascorbic acid (DHA) in water and in NaCl solutions was measured at temperatures range 298 K to 313 K. The limited molar conductance (Λo) and the constant of the ions association (KA) are calculated using the Shedlovsky techniques. The dynamic radius of the concerned ion (R) is calculated by used Stokes–Einstein relation. The heat of association, the Gibbs free energy, the change of entropy and activation energy (ΔHo/ kJ mol-1, ΔGo/ kJ mol-1, ΔSo/J K-1 mol-1, and ΔES/ kJ mol-1) respectively), also calculated. The data show increases the molar conductance with increase in temperature and decreasing in values at addition of DHA to Lys and Arg solutions. The association ions in NaCl solutions appear to increase in radius and decrease in diffusion coefficient relative to water solutions.ΔES, shows in most samples a positive value for the association and the values in NaCl solutions has lower relative to the water solutions. ΔGo is a trend to decrease with an increase in DHA concentration in water and NaCl solutions. The ion association is exothermic reaction relative to the negative value of ΔHo. The ΔSo andΔHo results, for Lys and Arg solutions, show decreasing in values at increase in DHA concentration in water and NaCl solutions. ΔGo (kJ mol-1), ΔSo (J K-1 mol-1), Î”Ho (kJ mol-1), and ΔEs (kJ mol-1) 


Sign in / Sign up

Export Citation Format

Share Document