Sodium diethyldithiocarbamate as a novel corrosion inhibitor to mitigate corrosion of 2024-T3 aluminum alloy in 3.5 wt% NaCl solution

2020 ◽  
Vol 307 ◽  
pp. 112965 ◽  
Author(s):  
Iman Mohammadi ◽  
Taghi Shahrabi ◽  
Mohammad Mahdavian ◽  
Mazdak Izadi
2014 ◽  
Vol 20 (6) ◽  
pp. 4276-4285 ◽  
Author(s):  
Ambrish Singh ◽  
Yuanhua Lin ◽  
Wanying Liu ◽  
Shijie Yu ◽  
Jie Pan ◽  
...  

2015 ◽  
Vol 30 (6) ◽  
pp. 627
Author(s):  
YE Zuo-Yan ◽  
LIU Dao-Xin ◽  
LI Chong-Yang ◽  
ZHANG Xiao-Hua ◽  
ZANG Xiao-Ming ◽  
...  

Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


1980 ◽  
Vol 16 (1) ◽  
pp. 20-23
Author(s):  
V. P. Batrakov ◽  
V. P. Zhilikov ◽  
V. V. Kafel'nikov ◽  
B. E. Kornaukhov

2015 ◽  
Vol 766-767 ◽  
pp. 733-738
Author(s):  
A.V. Santhana Babu ◽  
P.K. Giridharan ◽  
A. Venugopal ◽  
P. Ramesh Narayanan ◽  
S.V.S. Narayana Murty

Limitation in penetration depth is a concern in conventional TIG welding. To improve penetration capability of TIG process, Flux Bounded TIG (FBTIG) has been developed. Stress corrosion cracking (SCC) behavior of FBTIG welds of aluminum alloy AA 2219 T87 is evaluated in 3.5 weight percent NaCl solution using Slow Strain Rate Test technique (SSRT) as per ASTM G129. SCC index defined as the ratio of the elongation of tensile tested specimen in NaCl to that of air is taken as a measure of the susceptibility to cracking. Based on the SCC index, it is concluded that the SCC resistance of FBTIG joints are good and comparable to that of conventional TIG welds.


Corrosion inhibition of mild steel in 240 ppm NaCl solution using Calcium D-Pantothenate (Vitamin B5 ) as corrosion inhibitor is studied using electrochemical impedance, potentiodynamic polarization and weight loss studies. From the potentiodynamic polarization studies, icorr (corrosion current density) decreases with increasing the concentration of vitamin B5 (VB5 ). The CR (corrosion rate) decreases and the IE (inhibition efficiency) of VB5 increases on increasing the concentration of VB5 .Surface investigation using SEM, EDX spectra, UV-Vis, FTIR, electrochemical impedance, potentiodynamic polarization and adsorption isotherm parameter of VB5 in 240 ppm NaCl solution shows that VB5 can act asworthy corrosion inhibitors. Quantum chemical data obtained from density functional theory (DFT) calculations also agreed with the experimental outcomes.


Sign in / Sign up

Export Citation Format

Share Document