plasma electrolytic treatment
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 13)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
XIAOYUE JIN ◽  
LIN CHEN ◽  
KEJIAN WEI ◽  
RUIHONG LIU ◽  
JIAHAO YU ◽  
...  

In this paper, the antifriction carbonitriding (PEC/N) layers were prepared on pure iron by cathodic plasma electrolytic treatment (PET) in glycerin and carbamide aqueous solution under 360[Formula: see text]V for 1, 3 and 10[Formula: see text]min. Influence of discharge time on morphology, structure, surface roughness and microhardness of PEC/N layer was analyzed. The tribological performance of the PEC/N layer, growth mechanism and diffusion process during PEC/N treatment was investigated. The thickness of the PEC/N layer grew to 48[Formula: see text][Formula: see text]m for 10[Formula: see text]min treatment and the growth of the saturation layer met the parabolic law. The highest microhardness of the surface was up to 811 HV, which was 5 times of that of iron substrate. The PEC/N layer consisted of [Formula: see text]-Fe, Fe[Formula: see text]N, Fe4N, Fe3C, Fe5C2 phases and a little FeO phase. The wear rate of the PEC/N layer reduced by five-sixes comparing with the iron substrate and the surface of the wear track was much smoother. The temperature close to the surface during PEC/N fitted by the tested temperature values inside the sample was 801∘C (1074[Formula: see text]K), and the combination diffusion rate of C and N into pure iron during PET at 360[Formula: see text]V reached [Formula: see text][Formula: see text]m2/s. The electron temperature fluctuates between 3000[Formula: see text]K and 8000[Formula: see text]K. The antifriction PEC/N layer displayed a very good wear resistance and the higher diffusion rate makes plasma electrolytic carbonitriding a very effective technique for surface modification of pure iron.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012002
Author(s):  
B L Krit ◽  
M M Serov ◽  
N V Morozova ◽  
Ruizhi Wu ◽  
V M Medvetskova

Abstract The results of researches for the transformation to fiber state the Mg-8Li-1Al-0.6Ce-0.3Y ultralight magnesium alloy by the Pendant Drop Melt Extraction (PDME), and subsequent modifying obtained fibers by Plasma-Electrolytic Treatment (PET) are presented. The results demonstrate possibility of successful application of the above-mentioned methods in relation to chemically active materials. Purposeful modifying of ultralight magnesium alloys by PDME and PET methods is capable to significantly expand areas of using to these materials.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012021
Author(s):  
I V Tambovskiy ◽  
B L Krit ◽  
S A Kusmanov ◽  
A S Perkov ◽  
N V Morozova ◽  
...  

Abstract The possibility of plasma electrolytic treatment of an alloy of the Mg-Li system in an aqueous solution of ammonium chloride, ammonium nitrate and boric acid has been studied. The specific features of the process in the voltage range from 10 to 600 V are determined. The current-voltage and voltage-temperature characteristics during alloy processing are shown, as well as the effect of the processing time on the temperature of the samples. Plasma electrolytic boronitriding of the alloy can be carried out to study the efficiency of the technology at avoltage of 240 V, which corresponds to a sample temperature of 300 ± 10 °C.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012031
Author(s):  
T L Mukhacheva ◽  
T M Kalinina ◽  
S A Kusmanov

Abstract The article considers the study of the effect of plasma electrolytic processing on the tribotechnical characteristics of medium-carbon steel. Friction tests were carried out in dry friction mode. Electron microscope and profilometer were used to study the friction tracks. For a comprehensive assessment of the quality of the modified surface layer, the Kragelsky-Kombalov complex parameter was calculated. It was found that plasma electrolytic treatment leads to a decrease in the coefficient of friction and weight wear in comparison with hardened and untreated steel. It has been determined that the mechanism of wear of samples after plasma electrolytic treatment is fatigue wear at boundary friction and plastic contact.


Sign in / Sign up

Export Citation Format

Share Document