potentiodynamic polarization
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 100)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Bangarappa L

Abstract Potentiodynamic polarization measurements indicate that SBs acts as mixed type corrosion inhibitors. the morphology of the mild steel surface is investigated by scanning electron microscopy (SEM) and the surface composition was evaluated using energy-dispersive X-ray Spectroscopy (EDX) to show the presence of SBs on the mild steel surface in 1M HCL. The present study, three Schiff’s bases (SBs) namely 2 (2-hydroxybenzylideneamino) heptanedioic acids, 2 (4-dimethylamino benzlideamino) heptanedioic acids and 2 (4hydroxy-3-methoxybenzylideneamino) heptanedioic acids were synthesized. Using weight loss, potentiodynamic polarization and electromechanical impedance spectroscopy (EIS) techniques for corrosion inhibition properties on mild steel in 1M HCL has been investigated. The adsorption of SBs on the mild steel surface contains Langmuir adsorption isotherm. Here kinetic and thermodynamic parameters also determined to describe the mechanism of adsorption in relevance. The main object of this presentation is experimental study of the inhibiting action of synthesized Schiff’s bases of aldehydes containing nitrogen, oxygen and aromatic rings and Glutamic acid.


Author(s):  
Dwi Kemala Putri ◽  
Addin Akbar

Corrosion is a decrease in the quality of a metal material caused by a reaction with the environment. Reducing the corrosion rate on steel can be done by adding an inhibitor. Papaya leaf extract (Carica papaya.L) can be used as a corrosion inhibitor by immersion method. The effect of inhibitor on corrosion rate had been studied using weight loss method, potentiodynamic polarization method, and observation of steel surface using photooptic. It was found that corrosion rate decrease with increase concentration of papaya leaves extract. The highest inhibiton efficiency is 87.8% in 0.2 M hydrochloric acid with 2% concentration of papaya leaves extract. Potentiodynamic polarization method showed that papaya leaves extract decrease corrotion current. Inhibiton efficiency reached 81.58% in 2% extract concentration in which corrosion current decrease from 0.0266 mA/cm2 to 0.0049 mA/cm2. Analysis of photooptic showed that there is difference on steel surface corroded in hydrochloric acid with inhibitor and without it.


2021 ◽  
Vol 0 (4) ◽  
pp. 20-24
Author(s):  
N.R. Abıshova ◽  
◽  
G.S. Aliyev ◽  
U.M. Gurbanova ◽  
Y.A. Nuriyev ◽  
...  

The essay is about studies of the electrochemical reduction of nickel ions from a glycine electrolyte by the method of recording cyclic and linear potentiodynamic polarization curves. The effect of the concentration of the main components, potential sweep and temperature on the electrodeposition process of nickel has been studied. It has been found that at the beginning of the process the electrodeposition of the nickel ions from glycine electrolyte is controlled by electrochemical polarization, which turns into concentration polarization


2021 ◽  
Vol 25 (8) ◽  
pp. 1441-1448
Author(s):  
B.U. Ugi ◽  
V.M. Bassey ◽  
M.E. Obeten ◽  
S.A. Adalikwu ◽  
E.C. Omaliko ◽  
...  

The study on the action of Acetylcholine and Rivastigmine as Corrosion Inhibitors of Cu – Sn - Zn – Pb Alloy in Hydrochloric Acid Environment was carried out using density functional theory, electrochemical impedance spectroscopy, Potentiodynamic polarization, Scanning electron microscopy and weight loss. The result revealed that both Acetylcholine and Rivastigmine expired drugs were good inhibitors of Cu – Sn - Zn – Pb Alloy in Hydrochloric Acid Environment. This was confirmed from results of weight loss (99.1 % and 95.0 %), electrochemical impedance spectroscopy (EIS) (92.5 % and 91.8 %), and Potentiodynamic polarization (97.4 % and 87.1 %). Both inhibitors were able to increase the charge transfer resistance and corrosion current densities of the electrical solution and reduce the double layer capacitance of the metal – solution interface. Inhibition was as a result of adsorption of inhibitor molecules on the Cu – Sn - Zn – Pb surface. Thermodynamically, inhibitors showed greater stability on metal surface, spontaneous in the forward direction and reduction in level of disorderliness. Inhibitors demonstrated a mixed type inhibition while physical adsorption mechanism was proposed for the inhibitor – metal interaction. Langmuir adsorption isotherm was obeyed as data fitted adequately to the isotherm and regression coefficient was approximately unity. A monolayer adsorption was deduces.


2021 ◽  
Vol 29 (1) ◽  
pp. 16-25
Author(s):  
Wasiu Ayoola ◽  
Stephen Durowaye ◽  
Kenneth Andem ◽  
Olujide Oyerinde ◽  
Jesutofunmi Ojakoya

Surface preparation of engineering materials is necessary for preventing corrosion and subsequent failure of materials in service. There are different methods of surface preparations that can affect engineering materials in different ways. This study investigated the effect of surface preparation on the corrosion behavior of zinc sprayed and unsprayed mild steel. Quantitative analysis and potentiodynamic polarization techniques were used to evaluate the immersed samples of different surface preparations. The results indicated that the least corrosion rate was observed for the uncoated sample prepared with CC1200 grit paper at 0.041 mpy and successive samples in the order of CC220 grit paper at 0.047 mpy < P60 grit paper at 0.052 mpy < filing at 0.064 mpy and grinding at 0.074 mpy after 42-days of immersion. The prepared samples that were further coated with zinc spray demonstrated a similar trend. The sample prepared with CC1200 grit paper and further coated with zinc spray exhibited the lowest corrosion rate of 1.35 x 10-9 mpy. Potentiodynamic polarization results further suggested that the same behavior was observed in the quantitative analysis.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1299
Author(s):  
Fani Stergioudi ◽  
Aikaterini Baxevani ◽  
Azarias Mavropoulos ◽  
Georgios Skordaris

A simple and versatile chemical solution deposition process is reported to manipulate the wettability properties of copper sheets. The whole process has the advantage of being time-saving low cost and environment-friendly. An adherent silver coating was achieved under optimal conditions. Scanning electron microscopy and X-ray diffraction were used to examine the silver film structure. A confocal microscope was used to record the 3D topography and assess the film roughness of the surface. A dual morphology was revealed, consisting of broad regions with feather-like structured morphologies and some areas with spherical morphologies. Such silver-coated copper samples exhibited a sufficiently stable coating with superhydrophobicity, having a maximum water contact angle of 152°, along with an oleophilic nature. The corrosion behavior of the produced hydrophobic copper under optimal conditions was evaluated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) using a 3.5% NaCl solution. The corrosion protection mechanism was elucidated by the proposed equivalent circuits, indicating that the superhydrophobic silver coating acted as an effective barrier, separating the Cu substrate from the corrosive solution. The superhydrophobic coating demonstrated enhanced anti-corrosion properties against NaCl aqueous solution in relation to the copper substrate as indicated from both EIS and potentiodynamic polarization experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Shobha Bhaskara ◽  
Sanaulla Pathapalya Fakrudeen ◽  
Tegene Desalegn ◽  
H. C. Ananda Murthy ◽  
V. Bheemaraju

The Schiff base compounds N,N ′ -bis(salicylidine)-4,4 ′ –diaminostilbene(SDS) and N,N ′ -bis(salicylidine)-4,4 ′ -diamino azobenzene(SDA) were synthesized, and their molecular structure was determined by FT-IR and 1H NMR. The corrosion inhibitions of Schiff base compounds on aluminum alloy 2024 in 1 M hydrochloric acid were evaluated by potentiodynamic polarization, impedance techniques, weight loss method, and scanning electron microscopic technique. The potentiodynamic polarization (PDP) studies revealed that SDS and SDA compounds acted predominantly as cathodic inhibitors. The electrochemical impedance spectroscopic (EIS) parameters confirmed the adsorption of SDS and SDA molecules over the surface of aluminum alloy 2024 alloy by forming an inhibitive layer. The weight loss studies showed that the inhibition efficiency of these compounds increases directly with concentration and decreases with an increase in solution temperature and immersion time. The thermodynamic parameters were calculated to investigate the mechanism of corrosion inhibition. The SDA was found to be more effective than SDS and followed the Langmuir adsorption isotherm model. The scanning electron microscopy (SEM) results revealed that the deterioration of the alloy surface is minimal in the presence of an inhibitor. Both Schiff base molecules exhibited superior corrosion inhibition for aluminum alloy 2024 alloy in HCl medium.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kewei Fang ◽  
Chengtao Li ◽  
Shuai Dong ◽  
Dubao Zhang ◽  
Xiangfeng Wu ◽  
...  

The corrosion behaviors of A106B carbon steel and 304L stainless steel (SS) in seawater with different Cu2+ concentrations were studied by the immersion test and the potentiodynamic polarization test. The results showed that with the increasing Cu2+ concentration, the mass lot rates of A106B and 304L SS all increased in the immersion test, and compared with A106B, the mass lot rates of 304L SS were all smaller. In the potentiodynamic polarization test, following the concentration of Cu2+ increased, the corrosion potential of A106B firstly shifted negatively; then, when Cu2+ increased to 100 ppm, the polarization curve moved to the upper right direction; namely, both the corrosion potential and corrosion electrical density increased. The corrosion potential of 304L SS increased with the increasing Cu2+, and the passive region was reduced; the pitting sensitivity improved.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1471
Author(s):  
Yuhong Yao ◽  
Yaohua Jin ◽  
Wei Gao ◽  
Xiaoyu Liang ◽  
Jian Chen ◽  
...  

AlCoCrFeNiZrx (x = 0, 0.1, 0.2, 0.3, and 0.5) high-entropy alloys (HEAs) were prepared by a non-consumable vacuum arc melting technology, and the microstructure and corrosion behavior were investigated by XRD, SEM, immersion tests, and electrochemical measurements. The results indicate that galvanic corrosion of the AlCoCrFeNiZrx alloys occurred in 0.5 M H2SO4 solution, and only 0.1 mol of the added Zr could greatly improve the corrosion resistance of the alloys. The corrosion properties of the AlCoCrFeNiZrx HEAs had similar change tendencies with the increase in the Zr content in the immersion tests, potentiodynamic polarization measurements, and electrochemical impedance analysis, that is, the corrosion resistance of the AlCoCrFeNiZrx alloys in a 0.5 M H2SO4 solution first increased and then decreased with the increase in the Zr content. The Zr0.1 alloys were found to have the best selective corrosion and general corrosion resistance with the smallest corrosion rate, whereas the Zr0.3 alloys presented the worst selective corrosion and general corrosion resistance with the highest corrosion rate from both the immersion tests and the potentiodynamic polarization measurements.


Sign in / Sign up

Export Citation Format

Share Document