Aggregational behaviour of promethazine hydrochloride and TX-45 surfactant mixtures: A multi-techniques approach

2021 ◽  
pp. 117558
Author(s):  
Malik Abdul Rub ◽  
Naved Azum ◽  
Dileep Kumar ◽  
Anish Khan ◽  
Muhammad Nadeem Arshad ◽  
...  
Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2020 ◽  
Author(s):  
Zahari Vinarov ◽  
Gabriela Gancheva ◽  
Nikola Burdzhiev ◽  
Slavka S. Tcholakova

Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. <sup>1</sup>H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules.


Langmuir ◽  
2014 ◽  
Vol 30 (32) ◽  
pp. 9741-9751 ◽  
Author(s):  
Jeffrey Penfold ◽  
Robert K. Thomas ◽  
Peixun Li ◽  
Jordan T. Petkov ◽  
Ian Tucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document