Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field

2018 ◽  
Vol 1157 ◽  
pp. 288-291 ◽  
Author(s):  
E.B. Al ◽  
E. Kasapoglu ◽  
S. Sakiroglu ◽  
C.A. Duque ◽  
I. Sökmen
2012 ◽  
Vol 26 (06) ◽  
pp. 1250013 ◽  
Author(s):  
F. UNGAN ◽  
U. YESILGUL ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SOKMEN

The effects of nitrogen and indium mole concentration on the intersubband optical absorption for (1–2) transition and the binding energy of the shallow-donor impurities in a Ga 1-x In x N y As 1-y/ GaAs / Al 0.3 Ga 0.7 As quantum well under the electric field is theoretically calculated within the framework of the effective-mass approximation. Results are obtained for several concentrations of nitrogen and indium, and the applied electric field. The numerical results show that the intersubband transitions and the impurity binding energy strongly depend on the nitrogen and indium concentrations.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Guangxin Wang ◽  
Xiuzhi Duan ◽  
Wei Chen

Using a variational method with two-parameter trial wave function and the effective mass approximation, the binding energy of a donor impurity in GaAs/AlxGa1−xAs cylindrical quantum ring (QR) subjected to an external field is calculated. It is shown that the donor impurity binding energy is highly dependent on the QR structure parameters (radial thickness and height), impurity position, and external electric field. The binding energy increases inchmeal as the QR parameters (radial thickness and height) decrease until a maximum value for a central impurity and then begins to drop quickly. The applied electric field can significantly modify the spread of electronic wave function in the QR and shift electronic wave function from the donor position and then leads to binding energy changes. In addition, results for the binding energies of a hydrogenic donor impurity as functions of the impurity position and applied electric field are also presented.


2013 ◽  
Vol 380-384 ◽  
pp. 4284-4289
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

Based on the the effective mass approximation and variational approach, the donor impurity states confined in self-formed GaAs/AlxGa1-xAs quantum rings (QRs) are investigated theoretically. A uniform electric field is applied along the growth direction of the QR. The different effective masses in the different regions of the GaAs/AlxGa1-xAs QR are taken into consideration. Numerical results show that the binding energy of a donor impurity increases gradually, reaches a maximum value, and then decreases quickly to the special value as the QR height decreases. Given a fixed QR size, the binding energy increases for the impurity located at the center of the QR when the Al composition increases. In addition, it can also be found that when the applied electric field strength increases, the donor binding energy increases for impurities localized at the negative z axis of the QR; however, the donor binding energy decreases slightly for impurities located at the center and positive z axis of the QR.


Sign in / Sign up

Export Citation Format

Share Document