Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro

Author(s):  
Fabrice Nesslany ◽  
Dominique Parent-Massin ◽  
Daniel Marzin
1996 ◽  
Vol 24 (3) ◽  
pp. 325-331
Author(s):  
Iain F. H. Purchase

The title of this paper is challenging, because the question of how in vitro methods and results contribute to human health risk assessment is rarely considered. The process of risk assessment usually begins with hazard assessment, which provides a description of the inherent toxicological properties of the chemical. The next step is to assess the relevance of this to humans, i.e. the human hazard assessment. Finally, information on exposure is examined, and risk can then be assessed. In vitro methods have a limited, but important, role to play in risk assessment. The results can be used for classification and labelling; these are methods of controlling exposure, analogous to risk assessment, but without considering exposure. The Ames Salmonella test is the only in vitro method which is incorporated into regulations and used widely. Data from this test can, at best, lead to classification of a chemical with regard to genotoxicity, but cannot be used for classification and labelling on their own. Several in vitro test systems which assess the topical irritancy and corrosivity of chemicals have been reasonably well validated, and the results from these tests can be used for classification. The future development of in vitro methods is likely to be slow, as it depends on the development of new concepts and ideas. The in vivo methods which currently have reasonably developed in vitro alternatives will be the easiest to replace. The remaining in vivo methods, which provide toxicological information from repeated chronic dosing, with varied endpoints and by mechanisms which are not understood, will be more difficult to replace.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Celinda M. Kofron ◽  
Tae Yun Kim ◽  
Fabiola Munarin ◽  
Arvin H. Soepriatna ◽  
Rajeev J. Kant ◽  
...  

AbstractCardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.


2020 ◽  
Vol 176 (1) ◽  
pp. 236-252 ◽  
Author(s):  
Maria T Baltazar ◽  
Sophie Cable ◽  
Paul L Carmichael ◽  
Richard Cubberley ◽  
Tom Cull ◽  
...  

Abstract Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma Cmax) were estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using a battery of in vitro NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general bioactivity (ToxCast data, an in vitro cell stress panel and high-throughput transcriptomics). In addition, in silico alerts for genotoxicity were followed up with the ToxTracker tool. The PoDs from the in vitro assays were plotted against the calculated in vivo exposure to calculate a margin of safety with associated uncertainty. The predicted Cmax values for face cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulatory effects at consumer-relevant exposures. In conclusion, this case study demonstrated the value of integrating exposure science, computational modeling and in vitro bioactivity data, to reach a safety decision without animal data.


1996 ◽  
Vol 88 ◽  
pp. 73
Author(s):  
Philippe Hantson ◽  
Louis de Saint-Georges ◽  
Alain Léonard ◽  
Paul Mahieu

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 298-298
Author(s):  
Susan L. Barrett ◽  
Richard W. Ahn ◽  
Meera R. Raja ◽  
Jennifer K. Jozefik ◽  
Lidia Spaho ◽  
...  

Author(s):  
Andreas Taubmann ◽  
Ines Willershausen ◽  
Christian Walter ◽  
Sarah Al-Maawi ◽  
Bernd Kaina ◽  
...  

Abstract Objectives The biocompatibility of methacrylate-based adhesives is a topic that is intensively discussed in dentistry. Since only limited evidence concerning the cyto- and genotoxicity of orthodontic adhesives is available, the aim of this study was to measure the genotoxic potential of seven orthodontic methacrylate-based adhesives. Materials and methods The XTT assay was utilized to determine the cytotoxicity of Assure Plus, Assure Bonding Resin, ExciTE F, OptiBond Solo Plus, Scotchbond Universal Adhesive, Transbond MIP, and Transbond XT after an incubation period of 24 h on human gingival fibroblasts. We also performed the γH2AX assay to explore the genotoxic potential of the adhesives within cytotoxic dose ranges after an incubation period of 6 h. Results The XTT assay showed a concentration-dependent reduction in cell viability. The decrease in cellular viability was in the same dose range most significant for Assure Plus, rendering it the adhesive material with the highest cytotoxicity. Employing the γH2AX assay, a concentration-dependent increase in H2AX phosphorylation was detected, indicating induction of DNA damage. Conclusions For most products, a linear correlation between the material concentration and γH2AX foci was observed. The most severe effect on γH2AX focus induction was found for Transbond MIP, which was the only adhesive in the test group containing the co-initiator diphenyliodonium hexafluorophosphate (DPIHP). Clinical relevance The data indicate that orthodontic adhesives, notably Transbond MIP, bear a genotoxic potential. Since the study was performed with in vitro cultivated cells, a direct translation of the findings to in vivo exposure conditions should be considered with great diligence.


Sign in / Sign up

Export Citation Format

Share Document