Determination of the relative biological effectiveness and oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells: An in vitro and in vivo study

Author(s):  
Ryoichi Hirayama ◽  
Akiko Uzawa ◽  
Maki Obara ◽  
Nobuhiro Takase ◽  
Kana Koda ◽  
...  
2012 ◽  
Vol 41 (3-4) ◽  
pp. 233-245 ◽  
Author(s):  
K.A. Higley ◽  
D.C. Kocher ◽  
A.G. Real ◽  
D.B. Chambers

Radiation weighting factors have long been employed to modify absorbed dose as part of the process of evaluating radiological impact to humans. Their use represents an acknowledgement of the fundamental difference in energy deposition patterns of charged and uncharged particles, and how this can translate into varying degrees of biological impact. Weighting factors used in human radiation protection are derived from a variety of endpoints taken from in-vitro experiments that include human and animal cell lines, as well as in-vivo experiments with animals. Nonetheless, the application of radiation weighting factors in the context of dose assessment of animals and plants is not without some controversy. Specifically, radiation protection of biota has largely focused on limiting deterministic effects, such as reduced reproductive fitness. Consequently, the application of conventional stochastic-based radiation weighting factors (when used for human protection) appears inappropriate. While based on research, radiation weighting factors represent the parsing of extensive laboratory studies on relative biological effectiveness. These studies demonstrate that the magnitude of a biological effect depends not just on dose, but also on other factors including the rate at which the dose is delivered, the type and energy of the radiation delivering the dose, and, most importantly, the endpoint under consideration. This article discusses the efforts taken to develop a logical, transparent, and defensible approach to establishing radiation weighting factors for use in assessing impact to non-human biota, and the challenges found in differentiating stochastic from deterministic impacts.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2997
Author(s):  
Chun-Chieh Chan ◽  
Fang-Hsin Chen ◽  
Ya-Yun Hsiao

This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0–1.5 and 1.0–1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0–3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1–4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.


1986 ◽  
Vol 107 (3) ◽  
pp. 354 ◽  
Author(s):  
S. M. Javed Afzal ◽  
T. S. Tenforde ◽  
S. S. Parr ◽  
S. B. Curtis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document