Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment

2007 ◽  
Vol 449-451 ◽  
pp. 894-897 ◽  
Author(s):  
S.Y. Park ◽  
M.C. Kim ◽  
C.G. Park
2007 ◽  
Vol 539-543 ◽  
pp. 1264-1269
Author(s):  
S.Y. Park ◽  
Moon Chul Kim ◽  
Chan Gyung Park

Nano structured WC-Co coatings with carbide size of 100−200nm were fabricated by detonation gun spraying. The fabricated nano coatings showed improved hardness and wear resistance compared to micron WC-Co coatings. Considerable phase decomposition of WC to W2C and amorphous phase in nano coatings was detected, which is known to degrade wear resistance of coatings. In order to improve the wear resistance of the coatings by recovering of dissociated carbide phases, post heat treatment was conducted in Ar environment at temperature range of 400−900°C. Harness, fracture toughness and wear resistance of nano coatings were significantly improved by post heat treatment. The improved properties were elucidated and discussed in terms of microstructure and phase compositions.


2021 ◽  
Vol 64 ◽  
pp. 620-632
Author(s):  
Alexander Malikov ◽  
Anatoly Orishich ◽  
Igor Vitoshkin ◽  
Evgeniy Karpov ◽  
Alexei Ancharov

2019 ◽  
Vol 264 ◽  
pp. 02001 ◽  
Author(s):  
Eduardo de Avila ◽  
Jaeseok Eo ◽  
Jihye Kim ◽  
Namsoo P. Kim

PMMA, PC, and PEEK are thermoplastic polymers that possess favorable properties for biomedical applications. These polymers have been used in fields of maxillo-facial, orthopedic, intraocular surgery, and bio-implant, due to their excellent mechanical properties, osteoinductive potential, and antimicrobial capabilities. In this study, the effect of heat treatment on the mechanical properties of 3D printed polymers was characterized. By modifying printing temperature and post heat treatment process, the mechanical properties were specifically tailored for different applications, correlating with the properties of the implants that are commonly made using molding processes.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


Sign in / Sign up

Export Citation Format

Share Document