Three-point bending fracture characteristics of three-dimensional-C/SiC with single-edge notch beam specimens

2008 ◽  
Vol 483-484 ◽  
pp. 123-126 ◽  
Author(s):  
Gangchang Ji ◽  
Shengru Qiao ◽  
Shuangming Du ◽  
Dong Han ◽  
Mei Li
2020 ◽  
Vol 156 ◽  
pp. 05027
Author(s):  
Patria Kusumaningrum ◽  
Bambang Budiono ◽  
Muhammad Fajar ◽  
Elitha

An extended finite element method (XFEM) for fracture problem within the finite element software ABAQUS is adopted in order to investigate the mechanical properties and fracture behaviour of RPC material. The RPC materials observed are plain RPC of 0% and steel fiber RPC (SFRPC) of 2% volume fraction. Single edge notch three-point bending (TPB) tests of RPC materials are performed. The mechanical properties of RPC with respect to single edge notch TPB test, i.e. tensile stress, CMOD, and fracture energy obtained from experiment are then compared to those obtained from numerical analysis. A good agreement is observed between the experimental and numerical results.


2020 ◽  
Vol 26 ◽  
pp. 94-99
Author(s):  
Eliška Šmídová ◽  
Petr Kabele ◽  
Michal Šejnoha

Two groups of small-size single edge notched beams (SENB) made of European spruce (Picea abies) were tested in three-point bending (3PB) until failure under displacement control. The first group comprised of eight solid and two glued laminated (GL) timber beams manufactured with (a) the single edge notch at the bottom of the mid-span and (b) the reduced ligament depth. The second group consisted of four GL timber beams with the single edge notch only. We employed digital image correlation (DIC) to quantify strains and displacements, capture the damage evolution, and track the sequence of failure patterns. In this work, we present response of the beams in terms of load vs. crosshead displacement of the moving crosshead and load vs. crack tip opening displacement (CTOD).


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1400
Author(s):  
Rhys Jones ◽  
Calvin Rans ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos ◽  
Nam Phan ◽  
...  

The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman–Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.


1987 ◽  
Vol 28 (2) ◽  
pp. 223-238 ◽  
Author(s):  
Noda Nao-Aki ◽  
Nisitani Hironobu

Sign in / Sign up

Export Citation Format

Share Document