Taguchi analysis of extrusion variables and composition effects on the morphology and mechanical properties of EPR-g-MA toughened polyamide 6 and its composite with short glass fiber

2009 ◽  
Vol 506 (1-2) ◽  
pp. 45-57 ◽  
Author(s):  
A. Shojaei ◽  
M. Fereydoon
2004 ◽  
Vol 856 ◽  
Author(s):  
Guralp Ozkoc ◽  
Goknur Bayram ◽  
Erdal Bayramli

ABSTRACTThe main objective of this study is to determine the effects of short glass fiber (SGF) content and extrusion conditions such as screw speed and barrel temperature, on the mechanical properties and morphologies of structural composites produced by compounding SGFs with poly (acrylonitrile-butadiene-styrene) (ABS). It was also aimed to determine the effects of adhesion at the fiber/matrix interface, which was promoted by incorporation of polyamide-6 (PA6) to the ABS/SGF composite. Results showed that increasing screw speed during extrusion decreased the average fiber length; therefore mechanical properties of the composites affected negatively. The increasing extrusion temperature decreased the fiber length degradation and higher tensile strength and modulus values were obtained. The use of PA6 in composites increased the interfacial adhesion, which was supported by SEM microphotographs; therefore, improved mechanical properties were obtained.


2013 ◽  
Vol 365-366 ◽  
pp. 1148-1151 ◽  
Author(s):  
Jia Horng Lin ◽  
Zheng Yan Lin ◽  
Jin Mao Chen ◽  
Chen Hung Huang ◽  
Ching Wen Lou

This study produces the far-infrared emitting composites by using impact-resistant polypropylene, short glass fibers, and far-infrared masterbatches. The addition of short glass fiber and far-infrared masterbatches is then evaluated to determine their influence on the mechanical properties and far-infrared emissivity of the resulting composites. The experimental results show that with an increase in the content of short glass fibers, the tensile strength increases from 34 MPa to 56 MPa, the far-infrared emissivity increases from 0.85 to 0.93, but the impact strength decreases from 1037 J/m to 197 J/m, proving that the resulting composites have desired mechanical properties and far-infrared emission.


Sign in / Sign up

Export Citation Format

Share Document