Phase stability comparison by first principle calculation and experimental observation of microstructure evolution in a Mg–6Gd–2Zn(wt%) alloy

2010 ◽  
Vol 527 (10-11) ◽  
pp. 2643-2648 ◽  
Author(s):  
L. Lin ◽  
P. Liang ◽  
L. Yang ◽  
L.J. Chen ◽  
Z. Liu ◽  
...  
2015 ◽  
Vol 1112 ◽  
pp. 286-289
Author(s):  
Ganjar Kurniawan Sukandi ◽  
Triati Dewi Kencana Wungu ◽  
Ferry Iskandar

First principle calculation based on Density Functional Theory and U correction (DFT+U) is used to investigate structural change while losing Li atom, average voltage for couple reaction, phase stability, and electronic structure of Li2Fe0.5Cr0.5SiO4. In this calculation, generalized gradient approach (GGA) of Perdew-Burke-Ernzerhof (PBE) is used for exchange-correlation functional. The initial structure of Li2Fe0.5Cr0.5SiO4 is obtained from the pmn21 structure of Li2FeSiO4 and then the Fe site is substituted by 50 % of Cr. The results of calculation show that the optimized Li2Fe0.5Cr0.5SiO4 has a monoclinic structure, which has little different with Li2FeSiO4 structure. Although the delithiated system (LiFe0.5Cr0.5SiO4) is taken into consideration, the structural geometry does not change significantly. It is indicated that the presence of Cr does not affect to the property of structural change. From the density of states (DOS) analysis, the presence of Cr causes the width of band gap become decrease. Therefore, the electronic properties change from insulator to semiconductor-like behavior. Average voltage for couple reaction M+2/ M+3 of Li2Fe0.5Cr0.5SiO4 is about 3.05 V which is lower than Li2FeSiO4. Furthermore, the formation energy for Li2Fe0.5Cr0.5SiO4 and all delithiation have a relatively positive sign compared with Li2FeSiO4 that mean that they have poor phase stability than Li2FeSiO4.


2019 ◽  
Vol 125 (9) ◽  
pp. 094302
Author(s):  
H. Li ◽  
H. N. Du ◽  
X. W. He ◽  
Y. Y. Shen ◽  
H. X. Zhang ◽  
...  

2013 ◽  
Vol 652-654 ◽  
pp. 554-558
Author(s):  
Xin Min Min ◽  
Xuchao Wang

The relations between electronic structure and thermoelectric property of misfit layered cobaltite of Ca3Co4O9 and La-doped series are studied from the calculation by density function and discrete variation method (DFT-DVM). The highest valence band (HVB) and the lowest conduction band (LCB) near Fermi level are only mainly from O 2p and Co 3d in Ca2CoO3 layer. Therefore, the semiconductor, or thermoelectric property of Ca3Co4O9 should be mainly from Ca2CoO3 layer, but have no direct relation to the CoO2 layer, which is consistent with that binary oxides hardly have thermoelectric property, but trinary oxide compounds have quite good thermoelectric property. With the amount of La-doped increase, the gap between HVB and LCB firstly decrease, then reaches the minimum, finally increase. The gap affects the thermoelectric property. Therefore, there is a best amount of Na-doped to improve thermoelectric property, which is consistent with the experiment.


2017 ◽  
Vol 896 ◽  
pp. 120-127 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Ming Dong Yi

First-principle calculation is carried out on Al2O3(012)/SiC(310) interface model. It can be concluded from the electronic density and population analysis that Al-C and O-Si located at grain boundary primarily contribute to the interface bonding strength and creep resistance property. The electronic charges in grain boundaries and grains are compared with each other. And the valence electrons are found to be redistributed. The relationship of all kinds of chemical bonds in grains and grain boundary of the interface model is analyzed. Also the toughening mechanism of Al2O3/SiC multi-phase ceramic tool materials is explained in nano-scale.


1992 ◽  
Vol 291 ◽  
Author(s):  
Hideaki Sawada ◽  
Atsushi Nogami ◽  
Wataru Yamada ◽  
Tooru Matsiuniya

ABSTRACTA method of first principle calculation of alloy phase diagram was developed by the combination of first principle energy band calculation, cluster expansion method (CEM) and Monte Carlo (MC) simulation, where the effective multi-body potential energy for the flip test in MC simulation was obtained by the decomposition of the total energy by CEM. This method was applied to Cu-Au binary system. The calculated phase diagram agreed with that of CVM by introducing the dependence of the lattice constant on the concentration of the whole system. Furthermore an attempt of introducing the effect of local lattice relaxation was performed by the consideration of the local concentration. The order-disorder transition temperature became closer to the experimental value by adjustment of the local lattice constant depending on the concentration in the local region consisted of up to the second nearest neighbors of the atom tested for flipping.


Sign in / Sign up

Export Citation Format

Share Document