Microstructure characteristics and a deformation mechanism of fine-grained tungsten heavy alloy under high strain rate compression

2010 ◽  
Vol 527 (29-30) ◽  
pp. 7565-7570 ◽  
Author(s):  
X. Gong ◽  
J.L. Fan ◽  
B.Y. Huang ◽  
J.M. Tian
2019 ◽  
Vol 8 (4) ◽  
pp. 3475-3486 ◽  
Author(s):  
Abdul Malik ◽  
Wang Yangwei ◽  
Cheng Huanwu ◽  
Muhammad Abubaker Khan ◽  
Faisal Nazeer ◽  
...  

1997 ◽  
Author(s):  
Eric Preissner ◽  
Eyassu Woldesenbet ◽  
Jack Vinson ◽  
Eric Preissner ◽  
Eyassu Woldesenbet ◽  
...  

2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document