Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel

2014 ◽  
Vol 590 ◽  
pp. 433-439 ◽  
Author(s):  
Shuzo Eto ◽  
Yasufumi Miura ◽  
Junichi Tani ◽  
Takashi Fujii
Author(s):  
Gang Ma ◽  
Xiang Ling

High tensile weld residual stress is an important factor contributing to stress corrosion cracking (SCC). Ultrasonic impact treatment (UIT) can produce compressive stresses on the surface of welded joints that negate the tensile stresses to enhance the SCC resistance of welded joints. In the present work, X-ray diffraction method was used to obtain the distribution of residual stress induced by UIT. The results showed that UIT could cause a large compressive residual stress up to 325.9MPa on the surface of the material. A 3D finite element model was established to simulate the UIT process by using a finite element software ABAQUS. The residual stress distribution of the AISI 304 stainless steel induced by UIT was predicted by finite element analysis. In order to demonstrate the improvement of the SCC resistance of the welded joints, the specimens were immersed in boiling 42% magnesium chloride solution during SCC testing, and untreated specimen cracked after immersion for 23 hours. In contrast, treated specimens with different coverage were tested for 1000 hours without visible stress corrosion cracks. The microstructure observation results revealed that a hardened layer was formed on the surface and the initial coarse-grained structure in the surface was refined into ultrafine grains. The above results indicate that UIT is an effective approach for protecting weldments against SCC.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Xiang Ling ◽  
Gang Ma

High tensile weld residual stress is an important factor contributing to stress corrosion cracking (SCC). Ultrasonic impact treatment (UIT) can produce compressive stresses on the surface of welded joints that negate the tensile stresses to enhance the SCC resistance of welded joints. In the present work, X-ray diffraction method was used to obtain the distribution of residual stress induced by UIT. The results showed that UIT could cause a large compressive residual stress in access of 300 MPa on the surface of the material. A 3D finite element model was established to simulate the UIT process by using the finite element software ABAQUS. The residual stress distribution of the AISI 304 stainless steel induced by UIT was predicted by finite element analysis. In order to demonstrate the improvement of the SCC resistance of the welded joints, the specimens were immersed in boiling 42% magnesium chloride solution during SCC testing, and untreated specimen cracked after immersion for 23 h. In contrast, treated specimens with different impact duration were tested for 1000 h without visible stress corrosion cracks. The microstructure observation results revealed that a hardened layer was formed on the surface and the initial coarse-grained structure in the surface was refined into ultrafine grains. The above results indicate that UIT is an effective approach for protecting weldments against SCC.


Author(s):  
Noriyoshi Maeda ◽  
Tetsuo Shoji

Failure probability of welds by stress corrosion cracking (SCC) in austenitic stainless steel piping is analyzed by a probabilistic fracture mechanics (PFM) approach based on an electro-chemical crack growth model (FRI model, where FRI stands for “Fracture and Reliability Research Institute” of Tohoku University in Japan). In this model, crack growth rate da/dt, where a is crack depth, is anticipated as the rate of chemical corrosion process defined by electro-chemical Coulomb’s law. The process is also related to the strain rate at the crack tip, taking the small scale yielding into consideration. Compared to the mechanical crack growth equation like the power law for SCC, FRI model can introduce many parameters affecting the generation and break of protective film on the crack surface such as electric current associated with corrosion, the frequency of protective film break and mechanical parameters such as the stress intensity factor K and its change with time dK/dt. Derived transcendental equation is transformed into non-dimensional form, and then solved numerically by iterative method. The extension of surface crack by SCC under residual stress field is simulated by developing the stress distribution in polynomial form following ASME section XI appendix A. This simulation scheme is introduced into PFM framework to derive the failure probability of austenitic stainless steel piping in nuclear power plants to be used in developing a risk-informed inservice inspection (RI-ISI) program.


CORROSION ◽  
1958 ◽  
Vol 14 (12) ◽  
pp. 60-64 ◽  
Author(s):  
L. R. SCHARFSTEIN ◽  
W. F. BRINDLEY

Abstract Overstressed U-bends of Types 304 and 347 stainless steels were exposed to water containing chloride ions to determine the susceptibility of these steels to stress corrosion cracking between the temperatures of 165 F and 200 F. The pH was controlled at 6.5 to 7.5 and 10.6 to 11.2 for the tests. At the high pH, cracks appeared at the edges with little evidence of pitting. At the neutral pH, cracks were found at the edges and associated with pits. Sensitized Type 304 had longer and deeper cracks than annealed Types 304 and 347 in the same exposure time. Conclusion is made that chloride stress corrosion cracking of these steels in the temperature range of 165 F to 200 F is less severe than that experienced at 500 F and that specific conditions are required for corrosion cracking to occur at all. 3.2.2


Author(s):  
Shohei Kawano ◽  
Ayaka Kawagishi ◽  
Nobuichi Suezono ◽  
Kenichi Ueno ◽  
Ken Okuda ◽  
...  

The ultrasonic shot peening (USP) technique has been developed for boiling water reactor (BWR) components as a countermeasure against stress corrosion cracking. The effects on residual stress of USP for type 316L stainless steel and alloy 600 were evaluated. Compressive residual stress layer of 0.5 mm from the surface were formed on the specimens after USP using stainless steel ball with a diameter of 3 mm. Cross-sectional hardness measurement revealed that the increase of hardness due to USP is not significant compared with shot peening (SP). The FEM calculation showed the plastic strain induced by the impacts of 3 φ shot with 5 m/s is lower than those of 0.6 φ shot with 50 m/s. It suggests USP process suppresses the degree of work hardening in comparison with SP process. Dissimilar weld joint specimens which simulate the material and dimension of the shroud weld line H7 were examined to confirm the applicability of USP. The experimental result reveals that USP technique is applicable to reactor internal components as stress modification process.


Sign in / Sign up

Export Citation Format

Share Document