scholarly journals Effect of solution annealing and precipitation hardening at 250 °C – 550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel

Author(s):  
Ludmila Kučerová ◽  
Karolina Burdová ◽  
Štěpán Jeníček ◽  
Iveta Chena
2020 ◽  
Vol 403 ◽  
pp. 67-73
Author(s):  
Angelina Strakosova ◽  
Dalibor Vojtech ◽  
Drahomír Dvorský

Maraging steels are interesting for research after heat treatment, from which name is derived "maraging" – martensite-aging. After solution annealing and precipitation hardening the X3NiMoCoTi 18-9-5 alloy has excellent mechanical properties (tensile strength reaches up to 2000 MPa and hardness is 50-55 HRC), it is ductile and well weldable. The advantage of these materials is the possibility to be manufactured not only by conventional methods but also by modern additive manufacturing (AM) methods. One of which is selective laser melting (SLM). In this paper, the influence of heat treatment on the final microstructure and mechanical properties of the 3D-printed X3NiMoCoTi 18-9-5 maraging steel is investigated.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


Sign in / Sign up

Export Citation Format

Share Document