Strain-Rate Dependency and Impact Dynamics of Closed-Cell Aluminium Foams

Author(s):  
M.A. Kader ◽  
P.J. Hazell ◽  
M.A. Islam ◽  
S. Ahmed ◽  
M.M. Hossain ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Abdullah A. Al-Juaid ◽  
Ramzi Othman

The main focus of this paper is in evaluating four constitutive relations which model the strain rate dependency of polymers yield stress. Namely, the two-term power-law, the Ree-Eyring, the cooperative, and the newly modified-Eyring equations are used to fit tensile and compression yield stresses of polycarbonate, which are obtained from the literature. The four equations give good agreement with the experimental data. Despite using only three material constants, the modified-Eyring equation, which considers a strain rate-dependent activation volume, gives slightly worse fit than the three other equations. The two-term power-law and the cooperative equation predict a progressive increase in the strain rate sensitivity of the yield stress. Oppositely, the Ree-Eyring and the modified-Eyring equations show a clear transition between the low and high strain rate ranges. Namely, they predict a linear dependency of the yield stress in terms of the strain rate at the low strain rate range. Crossing a threshold strain rate, the yield stress sensitivity sharply increases as the strain rate increases. Hence, two different behaviors were observed though the four equations fit well the experimental data. More experimental data, mainly at the intermediate strain rate range, are needed to conclude which, of the two behaviors, is more appropriate for polymers.


2019 ◽  
Vol 56 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Friedrich Levin ◽  
Stefan Vogt ◽  
Roberto Cudmani

To characterize the effects of creep, strain rate, and relaxation in granular soils, different sands have been studied under oedometric loading. The tests were analysed in the framework of the isotache concept. The results show increasing creep rates with increasing vertical stresses and a strong reduction of the creep rate upon unloading. A lower void ratio leads to less creep. Evaluation of the ratio Cα/Cc, where Cα is the creep coefficient and Cc is the compression index, demonstrates considerable deviation from a constant soil-specific value for the sands. With increasing fine content, however, a constant soil-specific ratio has been found for a silty sand. In strain rate–controlled tests, a sand with low and a sand with significant content of nonplastic fines were compared. Constant rate of strain tests displayed practically no strain rate dependency for the sand with little fines and a well visible strain rate dependency for the very silty sand. Tests with stepwise change of strain rate showed non-isotache behaviour for the sand with little fines and isotache behaviour for the other. Stress-relaxation tests displayed an isochronous behaviour. The analysis of the three viscous effects in sands showed they cannot altogether be mathematically described in the framework of the isotache concept. A new compression model for the creep behaviour of sands is presented.


2019 ◽  
Vol 60 (2) ◽  
pp. 235-248 ◽  
Author(s):  
T. Fourest ◽  
P. Bouda ◽  
L. C. Fletcher ◽  
D. Notta-Cuvier ◽  
E. Markiewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document