Investigation of deformation mechanisms in an advanced FeCrAl alloy using in-situ SEM-EBSD testing

Author(s):  
Nitish Bibhanshu ◽  
Maxim N. Gussev ◽  
Caleb P. Massey ◽  
Kevin G. Field
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Peida Hao ◽  
Yanping Liu ◽  
Yuanming Du ◽  
Yuefei Zhang

In situ nanoindentation was employed to probe the mechanical properties of individual polycrystalline titania (TiO2) microspheres. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope (SEM/SPM) system were analyzed based on Hertz’s theory of contact mechanics. However, the deformation mechanisms of the nano/microspheres in the nanoindentation tests are not very clear. Finite element simulation was employed to investigate the deformation of spheres at the nanoscale under the pressure of an AFM tip. Then a revised method for the calculation of Young’s modulus of the microspheres was presented based on the deformation mechanisms of the spheres and Hertz’s theory. Meanwhile, a new force-displacement curve was reproduced by finite element simulation with the new calculation, and it was compared with the curve obtained by the nanoindentation experiment. The results of the comparison show that utilization of this revised model produces more accurate results. The calculated results showed that Young’s modulus of a polycrystalline TiO2microsphere was approximately 30% larger than that of the bulk counterpart.


2021 ◽  
Author(s):  
Sébastien Merkel ◽  
Sovanndara Hok ◽  
Cynthia Bolme ◽  
Wendy Mao ◽  
Arianna Gleason

<p>Iron is a key constituent of planetary core and an important technological material. Here, we combine <em>in situ</em> ultrafast X-ray diffraction at free electron lasers with optical-laser-induced shock compression experiments on polycrystalline Fe to study the plasticity of hexagonal close-packed (hcp)-Fe under extreme loading states. We identifiy the deformation mechanisms that controls the Fe microstructures and  observe a significant time-evolution of stress over the few nanoseconds of the experiments. These observations illustrate how ultrafast plasticity studies can reveal distinctive materials behavior under extreme loading states and will help constraining the pressure, temperature, and strain rate dependence of materials behavior in planetary cores.</p>


2017 ◽  
Vol 23 (S1) ◽  
pp. 764-765
Author(s):  
M.L. Taheri ◽  
G. Vetterick ◽  
A.C. Leff ◽  
M. Marshall ◽  
J. K. Baldwin ◽  
...  

2020 ◽  
Vol 6 (23) ◽  
pp. eaay2792
Author(s):  
Jiangwei Wang ◽  
Zhi Zeng ◽  
Minru Wen ◽  
Qiannan Wang ◽  
Dengke Chen ◽  
...  

Nanomaterials often surprise us with unexpected phenomena. Here, we report a discovery of the anti-twinning deformation, previously thought impossible, in nanoscale body-centered cubic (BCC) tungsten crystals. By conducting in situ transmission electron microscopy nanomechanical testing, we observed the nucleation and growth of anti-twins in tungsten nanowires with diameters less than about 20 nm. During anti-twinning, a shear displacement of 1/3〈111〉 occurs on every successive {112} plane, in contrast to an opposite shear displacement of 1/6〈1¯1¯1¯〉 by ordinary twinning. This asymmetry in the atomic-scale shear pathway leads to a much higher resistance to anti-twinning than ordinary twinning. However, anti-twinning can become active in nanosized BCC crystals under ultrahigh stresses, due to the limited number of plastic shear carriers in small crystal volumes. Our finding of the anti-twinning phenomenon has implications for harnessing unconventional deformation mechanisms to achieve high mechanical preformation by nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document