Copper doped nickel ferrite nanoparticles: Jahn-Teller distortion and its effect on microstructural, magnetic and electronic properties

2021 ◽  
Vol 263 ◽  
pp. 114864
Author(s):  
Mritunjoy Prasad Ghosh ◽  
Subhadeep Datta ◽  
Rishi Sharma ◽  
Kamar Tanbir ◽  
Manoranjan Kar ◽  
...  
2012 ◽  
Vol 532 ◽  
pp. 119-122 ◽  
Author(s):  
Shinji Kimura ◽  
Toshiyuki Mashino ◽  
Tomoyuki Hiroki ◽  
Daiki Shigeoka ◽  
Naoki Sakai ◽  
...  

2020 ◽  
Author(s):  
Marta L. Vidal ◽  
Michael Epshtein ◽  
Valeriu Scutelnic ◽  
Zheyue Yang ◽  
Tian Xue ◽  
...  

We report a theoretical investigation and elucidation of the x-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization as well as the measurement of<br>the carbon K-edge spectra of both species using a table-top high-harmonic generation (HHG) source are described in the companion experimental paper [M. Epshtein et al., J. Phys.<br>Chem. A., submitted. Available on ChemRxiv]. We show that the 1sC -> pi transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence<br>of the unpaired (spectator) electron in the pi-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC ->pi* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation.<br>The prominent split structure of the 1sC -> pi* band of the cation is attributed to the interplay between the coupling of the core -> pi* excitation with the unpaired electron<br>in the pi-subshell and the Jahn-Teller distortion. The calculations attribute most of<br>the splitting (~1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and estimate the additional splitting due to structural relaxation to<br>be around ~0.1-0.2 eV. These results suggest that x-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller<br>effect in benzene cation.<br>


1995 ◽  
Vol 60 (9) ◽  
pp. 1429-1434
Author(s):  
Martin Breza

Using semiempirical CNDO-UHF method the adiabatic potential surface of 2[Cu(OH)6]4- complexes is investigated. The values of vibration and vibronic constants for Eg - (a1g + eg) vibronic interaction attain extremal values for the optimal O-H distance. The Jahn-Teller distortion decreases with increasing O-H distance. The discrepancy between experimentally observed elongated bipyramid of [Cu(OH)6]4- in Ba2[Cu(OH)6] and the compressed one obtained by quantum-chemical calculation is explainable by hydrogen bonding of the axial hydroxyl group.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


2021 ◽  
Vol 490 ◽  
pp. 229519
Author(s):  
Renier Arabolla Rodríguez ◽  
Nelcy Della Santina Mohallem ◽  
Manuel Avila Santos ◽  
Demetrio A. Sena Costa ◽  
Luciano Andrey Montoro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document