The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering

2015 ◽  
Vol 54 ◽  
pp. 50-60 ◽  
Author(s):  
Zeinab Fereshteh ◽  
Patcharakamon Nooeaid ◽  
Mohammadhossein Fathi ◽  
Akbar Bagri ◽  
Aldo R. Boccaccini
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Cijun Shuai ◽  
Yiyuan Cao ◽  
Chengde Gao ◽  
Pei Feng ◽  
Tao Xiao ◽  
...  

Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity.


Author(s):  
Hend Elkhouly ◽  
Wael Mamdouh ◽  
Dalia I. El-Korashy

AbstractThis work is focused on integrating nanotechnology with bone tissue engineering (BTE) to fabricate a bilayer scaffold with enhanced biological, physical and mechanical properties, using polycaprolactone (PCL) and gelatin (Gt) as the base nanofibrous layer, followed by the deposition of a bioactive glass (BG) nanofibrous layer via the electrospinning technique. Electrospun scaffolds were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Surface area and porosity were evaluated using the nitrogen adsorption method and mercury intrusion porosimetry. Moreover, scaffold swelling rate, degradation rate and in vitro bioactivity were examined in simulated body fluid (SBF) for up to 14 days. Mechanical properties of the prepared scaffolds were evaluated. Cell cytotoxicity was assessed using MRC-5 cells. Analyses showed successful formation of bead-free uniform fibers and the incorporation of BG nanoparticles within fibers. The bilayer scaffold showed enhanced surface area and total pore volume in comparison to the composite single layer scaffold. Moreover, a hydroxyapatite-like layer with a Ca/P molar ratio of 1.4 was formed after 14 days of immersion in SBF. Furthermore, its swelling and degradation rates were significantly higher than those of pure PCL scaffold. The bilayer’s tensile strength was four times higher than that of PCL/Gt scaffold with greatly enhanced elongation. Cytotoxicity test revealed the bilayer’s biocompatibility. Overall analyses showed that the incorporation of BG within a bilayer scaffold enhances the scaffold’s properties in comparison to those of a composite single layer scaffold, and offers potential avenues for development in the field of BTE.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document