Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass

2016 ◽  
Vol 2 (12) ◽  
pp. 2240-2254 ◽  
Author(s):  
Bapi Sarker ◽  
Wei Li ◽  
Kai Zheng ◽  
Rainer Detsch ◽  
Aldo R. Boccaccini
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Nazemi ◽  
F. Moztarzadeh ◽  
N. Jalali ◽  
S. Asgari ◽  
M. Mozafari

The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG) containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Cijun Shuai ◽  
Yiyuan Cao ◽  
Chengde Gao ◽  
Pei Feng ◽  
Tao Xiao ◽  
...  

Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity.


Author(s):  
Hend Elkhouly ◽  
Wael Mamdouh ◽  
Dalia I. El-Korashy

AbstractThis work is focused on integrating nanotechnology with bone tissue engineering (BTE) to fabricate a bilayer scaffold with enhanced biological, physical and mechanical properties, using polycaprolactone (PCL) and gelatin (Gt) as the base nanofibrous layer, followed by the deposition of a bioactive glass (BG) nanofibrous layer via the electrospinning technique. Electrospun scaffolds were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Surface area and porosity were evaluated using the nitrogen adsorption method and mercury intrusion porosimetry. Moreover, scaffold swelling rate, degradation rate and in vitro bioactivity were examined in simulated body fluid (SBF) for up to 14 days. Mechanical properties of the prepared scaffolds were evaluated. Cell cytotoxicity was assessed using MRC-5 cells. Analyses showed successful formation of bead-free uniform fibers and the incorporation of BG nanoparticles within fibers. The bilayer scaffold showed enhanced surface area and total pore volume in comparison to the composite single layer scaffold. Moreover, a hydroxyapatite-like layer with a Ca/P molar ratio of 1.4 was formed after 14 days of immersion in SBF. Furthermore, its swelling and degradation rates were significantly higher than those of pure PCL scaffold. The bilayer’s tensile strength was four times higher than that of PCL/Gt scaffold with greatly enhanced elongation. Cytotoxicity test revealed the bilayer’s biocompatibility. Overall analyses showed that the incorporation of BG within a bilayer scaffold enhances the scaffold’s properties in comparison to those of a composite single layer scaffold, and offers potential avenues for development in the field of BTE.


2014 ◽  
Vol 679 ◽  
pp. 63-75 ◽  
Author(s):  
Laura Grehan ◽  
John Killion ◽  
Sinead Devery ◽  
Clement Higginbotham ◽  
Luke Geever

Novel photopolymerised composite hydrogels based on PEGDMA, maleic chitosan and maleic PVA were investigated for their suitability in bone tissue engineering applications. Initial swelling and compression studies revealed that the hydrogels permitted the retention of aqueous solution while still maintaining structural integrity. Promising cytotoxicity data was obtained during direct and indirect contact exposure of composite hydrogels to pre-osteoblast (MC3T3-E1) cells. Hybrid hydrogels displayed minimal cytotoxic properties and allow tailoring of mechanical properties by variation of the loading of the maleic component in the composite. Scanning electron microscopy and live-dead staining of composite hydrogels also revealed that maleic chitosan based gels supported the adhesion of MC3T3-E1 cells and may have potential as bone tissue engineering scaffolds.


Sign in / Sign up

Export Citation Format

Share Document