Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate

2020 ◽  
Vol 109 ◽  
pp. 110481 ◽  
Author(s):  
Tingting Wu ◽  
Haishan Shi ◽  
Yongyi Liang ◽  
Teliang Lu ◽  
Zefeng Lin ◽  
...  
Author(s):  
National Research Mamonov ◽  
National Research Chemis ◽  
National Research Drize ◽  
National Research Proskurina ◽  
I. I. Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2014 ◽  
Vol 21 (1) ◽  
pp. 72-77
Author(s):  
National Research Center for Hematology, Moscow, RF Mamonov ◽  
National Research Center for Hematology, Moscow, RF Chemis ◽  
National Research Center for Hematology, Moscow, RF Drize ◽  
National Research Center for Hematology, Moscow, RF Proskurina ◽  
I. I Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2004 ◽  
Vol 15 (4) ◽  
pp. 451-455 ◽  
Author(s):  
A. Reinstorf ◽  
M. Ruhnow ◽  
M. Gelinsky ◽  
W. Pompe ◽  
U. Hempel ◽  
...  

2017 ◽  
Vol 9 (2) ◽  
pp. 72-94 ◽  
Author(s):  
Sufiamie Hablee ◽  
Nurul Razali ◽  
Asep Alqap ◽  
Iis Sopyan

Biomaterials ◽  
1997 ◽  
Vol 18 (23) ◽  
pp. 1535-1539 ◽  
Author(s):  
I. Khairoun ◽  
M.G. Boltong ◽  
F.C.M. Driessens ◽  
J.A. Planell

Sign in / Sign up

Export Citation Format

Share Document