Mg alloy surface immobilised with caerin peptides acquires enhanced antibacterial ability and putatively improved corrosion resistance

2021 ◽  
Vol 121 ◽  
pp. 111819
Author(s):  
Tianfang Wang ◽  
Guoying Ni ◽  
Tsuyoshi Furushima ◽  
Hui Diao ◽  
Pingping Zhang ◽  
...  
2011 ◽  
Vol 38 (12) ◽  
pp. 1203001
Author(s):  
陈菊芳 Chen Jufang ◽  
李兴成 Li Xingcheng ◽  
周金宇 Zhou Jinyu ◽  
叶霞 Ye Xia

2020 ◽  
Author(s):  
Tianfang Wang ◽  
Guoying Ni ◽  
Tsuyoshi Furushima ◽  
Hui Diao ◽  
Pingping Zhang ◽  
...  

Abstract Magnesium (Mg) has mechanical properties similar to human bones and Mg alloy is considered ideal medical implant material. However, the high velocity of degradation inside the human inner environment severely hampers the usage of Mg alloys. In this study, caerin peptide 1.9 (F3) and a modified sequence of caerin 1.1 (F1) with anti-bacterial activity, were covalently immobilised on the surface of Mg alloys by plasma chemical click reaction. The in vitro antibacterial activity and corrosion resistance of these caerin peptide-immobilised Mg alloys were investigated in Dulbecco's Modified Eagle Medium (DMEM) solution. Un-immobilised Mg alloy sample, blank drug-sensitive tablet (BASD) and a commonly used antibiotics Tazocin were used for comparison. Results showed that peptide immobilised Mg samples showed significant improved corrosion resistance and prolonged antibacterial effect compared to non-immobilised Mg alloy and free caerin peptides. Furthermore, annealing or extruding treatment of Mg alloys improved the behaviours of corrosion resistance and antibacterial property. These results indicate that coating Mg alloy with caerin peptides improves the corrosion resistance in vitro and increases the alloy’s antibacterial ability. The mechanism underlying the prolonged antibacterial effect for annealed Mg alloys immobilised with the peptides (especially F3) remains unclear, which worth further experimental and theoretical investigation.


JOM ◽  
2020 ◽  
Vol 72 (12) ◽  
pp. 4305-4314
Author(s):  
Peng Zhou ◽  
Lei Deng ◽  
Peng Guo ◽  
Wei Rao ◽  
Xinyun Wang ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bochun Xu ◽  
Nan Zou ◽  
Yunhao Jia ◽  
Chao Feng ◽  
Jiajia Bu ◽  
...  

Purpose The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity. Design/methodology/approach The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation. Findings The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two. Research limitations/implications The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied. Practical implications The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification. Originality/value The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 390 ◽  
Author(s):  
Qian Zhao ◽  
Tiantian Tang ◽  
Fang Wang

The development of a self-cleaning and corrosion resistant superhydrophobic coating for aluminum alloy surfaces that is durable in aggressive conditions has attracted great interest in materials science. In the present study, a superphydrophobic film was fabricated on an AA5052 aluminum alloy surface by the electrodeposition of Ni–Co alloy coating, followed by modification with 6-(N-allyl-1,1,2,2-tetrahydro-perfluorodecyl) amino-1,3,5-triazine-2,4-dithiol monosodium (AF17N). The surface morphology and characteristics of the composite coatings were investigated by means of scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle (CA). The corrosion resistance of the coatings was assessed by electrochemical tests. The results showed that the surface exhibited excellent superhydrophobicity and self-cleaning performance with a contact angle maintained at 160° after exposed to the atmosphere for 240 days. Moreover, the superhydrophobic coatings significantly improved the corrosion resistant performance of AA5052 aluminum alloy substrate in 3.5 wt.% NaCl solution.


Vacuum ◽  
2014 ◽  
Vol 108 ◽  
pp. 61-65 ◽  
Author(s):  
M. Daroonparvar ◽  
M.A.M. Yajid ◽  
H.R. Bakhsheshi-Rad ◽  
N.M. Yusof ◽  
S. Izman ◽  
...  

2018 ◽  
Vol 913 ◽  
pp. 439-444 ◽  
Author(s):  
Zhao Ming Li ◽  
Hai Chang Jiang ◽  
Yun Li Wang ◽  
Duo Zhang ◽  
De Sheng Yan ◽  
...  

In this paper, the effect of Sc addition (0.06 wt%) on the corrosion behavior of medium strength Al-Zn-Mg alloy is investigated by mass loss measurements, electrochemical experiment, intergranular corrosion and exfoliation corrosion tests. The results indicate the addition of Sc reduces the relative weight loss and enhances pitting performance as a result of grain refinement. The improved intergranular corrosion and exfoliation corrosion resistance caused by minor Sc addition are mainly attributed to the delay in both the initiation and advance stages of local corrosion.


Sign in / Sign up

Export Citation Format

Share Document