Influence of micro-nano surface texture on the hydrophobicity and corrosion resistance of a Ti6Al4V alloy surface

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bochun Xu ◽  
Nan Zou ◽  
Yunhao Jia ◽  
Chao Feng ◽  
Jiajia Bu ◽  
...  

Purpose The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity. Design/methodology/approach The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation. Findings The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two. Research limitations/implications The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied. Practical implications The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification. Originality/value The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.

Author(s):  
He Xu ◽  
Yan Xu ◽  
Peiyuan Wang ◽  
Hongpeng Yu ◽  
Ozoemena Anthony Ani ◽  
...  

Purpose The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy. Design/methodology/approach First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model. Findings In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results. Originality/value This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.


2021 ◽  
Vol 27 (2) ◽  
pp. 421-428
Author(s):  
Rudranarayan Kandi ◽  
Pulak Mohan Pandey ◽  
Misba Majood ◽  
Sujata Mohanty

Purpose This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing. Design/methodology/approach The manufacturing approach involved extrusion of polymeric ink over a rotating predefined pattern to construct customized tubular structure of polycaprolactone (PCL) and polyurethane (PU). Dimensional deviation in thickness of scaffolds were calculated for various layer thicknesses of 3D printing. Physical and chemical properties of scaffolds were investigated by scanning electron microscope (SEM), contact angle measurement, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). Mechanical characterizations were performed, and the results were compared to the reported properties of human native trachea from previous reports. Additionally, in vitro cytotoxicity of the fabricated scaffolds was studied in terms of cell proliferation, cell adhesion and hemagglutination assay. Findings The developed fabrication route was flexible and accurate by printing customized tubular scaffolds of various scales. Physiochemical results showed good miscibility of PCL/PU blend, and decrease in crystalline nature of blend with the addition of PU. Preliminary mechanical assessments illustrated comparable mechanical properties with the native human trachea. Longitudinal compression test reported outstanding strength and flexibility to maintain an unobstructed lumen, necessary for the patency. Furthermore, the scaffolds were found to be biocompatible to promote cell adhesion and proliferation from the in vitro cytotoxicity results. Practical implications The attempt can potentially meet the demand for flexible tubular scaffolds that ease the concerns such as availability of suitable organ donors. Originality/value 3D printing over accurate predefined templates to fabricate customized grafts gives novelty to the present method. Various customized scaffolds were compared with conventional cylindrical scaffold in terms of flexibility.


2008 ◽  
Vol 47-50 ◽  
pp. 173-176 ◽  
Author(s):  
Tao Liu ◽  
Kin Tak Lau ◽  
Shou Gang Chen ◽  
Sha Cheng ◽  
Yan Sheng Yin

A novel super-hydrophobic film was prepared by myristic acid (CH3(CH2)12COOH) chemically adsorbed onto the polyethyleneimine (PEI) coated Fe3Al-type intermetallic wafer. The film character and structure were probed with contact angle measurement, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results suggest that the structure of the film is similar to lotus and the seawater contact angle is larger than 150◦. Moreover, the corrosion resistances of untreated and modified samples in seawater were investigated by electrochemical impedance spectroscopy (EIS). Experimental results show that the corrosion rate of Fe3Al-type intermetallic with super-hydrophobic surface decreases dramatically because of its special microstructure.


2011 ◽  
Vol 347-353 ◽  
pp. 560-563 ◽  
Author(s):  
Qun Jie Xu ◽  
Xi Hong Cai ◽  
Hong Yun ◽  
Xian Qin Deng

A novel hydrophobic film was prepared by Stearic acid (SA) chemically adsorbed onto the cupronickel B30 surface. The film properties were characterized by means of water contact angle measurement and electrochemical techniques. The results indicate that the structure of the adsorbed film is hydrophobic, and the contact angle is 113.82° for water. AC impedance and polarization curve measurements show that the corrosion resistance of cupronickel B30 modified by stearic acid is improved remarkably, and the inhibition efficiency reached 66.85%. After hydrophobic modified by stearic acid, the inhibition efficiency could reach 88.85% in 3% NaCl solution with the concentration of 0.1 g/L Na2WO4.


2012 ◽  
Vol 706-709 ◽  
pp. 105-112 ◽  
Author(s):  
Rahul Bhola ◽  
Brajendra Mishra

Ti6Al4V titanium alloy has been characterized for its prospective applications as an implant material. The surface treatments performed have brought about enhanced surface properties of these alloys and have produced corrosion resistant oxide films with increased bioactive properties. Characterization of the alloy surface has revealed the presence of a duplex oxide structure over the surface treated specimens, composed of an inner barrier layer and an outer porous layer. The inner barrier layer has imparted a high corrosion resistance to the alloy while the outer porous layer which is responsible for the increased roughness of the surface treated alloy specimens, has encouraged formation and deposition of apatite into the oxide pores and further resulted in an increase in cell adhesion over the alloy surface. Anodization and heat treatment procedures have proved advantageous to titanium alloys in terms of producing oxide films that can offer these alloys an improved biological performance.


2011 ◽  
Vol 299-300 ◽  
pp. 600-603 ◽  
Author(s):  
Li Li Xue ◽  
Ping Long ◽  
Huan Wei ◽  
Ying Liang

Hemocompatibility is a key property of biomaterials that come in contact with blood. Surface modification has shown great potential for improving the hemocompatibility of biomedical materials and devices. It has been improved that TiO2has excellent hemocompatibility. In this study, TiO2nanoparticles was added into polytetrafluorethylen (PTFE) resin in order to enhance hemocompatibility of the organic coating. The surface hydrophobicity of the coatings was characterized by contact angle measurement. Systematic evaluation of hemocompatibility, including platelet adhesion and blood clotting, proved that TiO2nanoparticles composite PTFE coating have better hemocompatibility. It is suggested that TiO2nano particles can improve hemocompatibility of organic coating due to its passive surface and chemical stability.


2015 ◽  
Vol 1120-1121 ◽  
pp. 677-688
Author(s):  
Yu Mei Han ◽  
Masoud Farzaneh

In the present study, a surface pretreatment method consisting of KOH etching followed by oxide thickening in boiling water was used to improve the corrosion and adhesion resistance of the coating. The coating morphology on non-pretreated and pretreated Al substrates was characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurement. FT-IR spectra was obtained by Fourier transform infrared spectrometer. The corrosion resistance of the coating in 3.5 wt.% NaCl solution was evaluated with potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. The adhesion resistance of the coating was tested using ISO-2409 standard. Results show that KOH etching followed by oxide thickening in boiling water can effectively improves the corrosion resistance and durability of the coating. Besides, this surface pretreatment method can also improve significantly the adhesion resistance of the coating.


2016 ◽  
Vol 63 (6) ◽  
pp. 499-507 ◽  
Author(s):  
Alvaro A. Rodriguez ◽  
Chelsea N. Monty ◽  
Christopher M. Miller ◽  
Hongbo Cong ◽  
Evan K. Wujcik

Purpose The purpose of this study is to develop laboratory techniques to evaluate the inhibition efficiency of salt neutralizer (SN) solutions in the corrosion protection of metal alloys associated with winter maintenance equipment. Design/methodology/approach The corrosion resistance of alloys A36, B36 and B152 treated with SNs was evaluated by accelerated corrosion testing (ASTM B117) and electrochemical polarization curves. Characterization of inhibition solutions was performed by contact angle measurements, scanning electron microscopy, ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Findings Salt neutralizer systems act as mixed inhibitors in acidic media by changing the corrosion resistance ability of metal alloys because of the adsorption of surfactant molecules through their hydrophilic heads. The correlation of the corrosion rate of metal alloys and the inhibitor efficiency showed the influence of the SN type, its concentration, its effective adsorption constant and its contact angle on the alloy surface. Salt neutralizers with higher manufacturer’s recommended wash concentrations (MRWC) to critical wash concentration ratio, lower contact angle on the alloy surface and higher Keff were more successful at preventing corrosion on the alloys tested. Originality/value The results of this work provide, for the first time, both quantitative and qualitative information of the properties of washing techniques in the use of effective cleaning strategies for protecting winter maintenance equipment from corrosion. Other state departments of transportation facing similar weather conditions will be benefited by identifying measures and techniques to increase the corrosion resistance of their equipment assets.


2006 ◽  
Vol 69 (10) ◽  
pp. 2352-2356 ◽  
Author(s):  
KELLY OLIVEIRA ◽  
TEREZA OLIVEIRA ◽  
PILAR TEIXEIRA ◽  
JOANA AZEREDO ◽  
MARIANA HENRIQUES ◽  
...  

Contamination of kitchen surfaces due to bacteria present in foodstuffs is one of the main causes of foodborne outbreaks. Salmonella infections are an important cause of foodborne disease, and Salmonella Enteritidis is the most common isolate in the past few years. In this study, the adhesion ability of four Salmonella Enteritidis isolates to different materials (polyethylene, polypropylene, and granite) used in kitchens was compared. The results indicated that the two plastic materials were generally less prone to colonization than was the granite. As surface properties of both bacteria and materials are a determinant in the adhesion process, surface hydrophobicity was determined through contact angle measurement, and the roughness of the materials was evaluated through the Ra and Rz values by a noncontact laser stylus tracing. The four Salmonella strains showed similar degrees of hydrophilicity, while the materials were hydrophobic, with granite having a very low degree of hydrophobicity (ΔGlwl = −4.7 mJ/m2). However, the different extents of adhesion could not be explained in terms of surface hydrophobicity and roughness of the materials tested. The main conclusion to be drawn is that Salmonella adhesion is strongly strain dependent, despite the similar degree of hydrophobicity displayed by all the strains assayed, and this can constitute a factor of virulence among the different serotypes.


2001 ◽  
Vol 705 ◽  
Author(s):  
Kenneth E. Gonsalves ◽  
Wei He ◽  
David B. Poker ◽  
Nikola Batina ◽  
Lhadi Merhari

AbstractWe describe a new approach for biomaterial patterning, viz, masked ion beam lithography. Poly (methyl methacrylate) (PMMA) film was used as a model system and subjected to Ca+ and P+ ion implantations through masks. Ca+ ion implantation was performed at an energy of 85 keV with a fluence of 1×1014 ions/cm2. P+ ion implantation was done at an energy of 85 keV with fluences of 1×1015 and 1×1016 ions/cm2. Arrays of holes were generated during these processes. AFM showed that the depth of the holes is in the nanoscale region. The surface hydrophobicity of the exposed PMMA films was investigated by contact angle measurement. The results indicated that ion implantation changed the surface hydrophobicity.


Sign in / Sign up

Export Citation Format

Share Document