A bifunctional electrospun nanocomposite wound dressing containing surfactin and curcumin: in vitro and in vivo studies

Author(s):  
Mohadeseh Hadizadeh ◽  
Mitra Naeimi ◽  
Mohammad Rafienia ◽  
Akbar Karkhaneh
Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


2017 ◽  
Vol 33 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Mahdi Naseri-Nosar ◽  
Saeed Farzamfar ◽  
Majid Salehi ◽  
Ahmad Vaez ◽  
Roksana Tajerian ◽  
...  

2021 ◽  
pp. 096739112110292
Author(s):  
Arash Montazeri ◽  
Fariba Saeedi ◽  
Yaser Bahari ◽  
Ahmad Ahmadi Daryakenari

The present research aimed to examine the biological properties of chitosan (CS)–polyvinyl alcohol (PVA) scaffolds reinforced with graphene oxide (GO) nanosheets, as wound dressings. The scaffolds were characterized by various techniques. The scanning electron microscopy (SEM) and thermogravimetry analyses (TGAs) were used to investigate distribution of the GO within the polymer. The viscoelastic properties were evaluated by dynamic mechanical thermal analysis (DMTA) to examine the quality of a wound dressing. In vitro and in vivo studies were conducted to assess the biocompatibility of the scaffolds as wound dressing. The cell viability and proliferation results indicated that mouse fibroblast cells (L929) could adhere on the 50CS–50PVA/3 wt% GO scaffold. Herewith, the fabricated CS–PVA–GO nanocomposite scaffolds are suggested as promising biomaterials for skin tissue engineering and wound dressing.


2018 ◽  
Vol 33 (4) ◽  
pp. 527-540 ◽  
Author(s):  
Marek Konop ◽  
Joanna Czuwara ◽  
Ewa Kłodzińska ◽  
Anna K Laskowska ◽  
Urszula Zielenkiewicz ◽  
...  

Impaired wound healing is a major medical problem in diabetes. The objective of this study was to determine the possible application of an insoluble fraction of fur-derived keratin biomaterial as a wound dressing in a full thickness surgical skin wound model in mice ( n = 20) with iatrogenically induced diabetes. The obtained keratin dressing was examined in vitro and in vivo. In vitro study showed the keratin dressing is tissue biocompatible and non-toxic for murine fibroblasts. Antimicrobial examination revealed the keratin dressing inhibited the growth of S. aureus and E. coli. In vivo studies showed the obtained dressing significantly ( p < 0.05) accelerated healing during the first week after surgery compared to control wounds. Keratin dressings were incorporated naturally into granulation and regenerating tissue without any visible signs of inflammatory response, which was confirmed by clinical and histopathological analysis. It is one of the first studies to show application of insoluble keratin proteins and its properties as a wound dressing. The obtained keratin dressing accelerated wound healing in mice with iatrogenically induced diabetes. Therefore, it can be considered as a safe and efficient wound dressing. Although future studies are needed to explain the molecular mechanism behind fur-derived keratin effect during the multilayer wound healing process, our findings may open the way for a new class of insoluble fur keratin dressings in chronic difficult to heal wounds treatment.


2019 ◽  
Vol 216 ◽  
pp. 25-35 ◽  
Author(s):  
Asghar Eskandarinia ◽  
Amirhosein Kefayat ◽  
Mohammad Rafienia ◽  
Maria Agheb ◽  
Sepehr Navid ◽  
...  

2019 ◽  
Author(s):  
Hadi Samadian ◽  
Arian Ehterami ◽  
Saeed Farzamfar ◽  
Ahmad Vaez ◽  
Hossein Khastar ◽  
...  

AbstractFunctional dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun nanofibrous mat loaded with berberine (Beri) as the DFU dressing. The results demonstrated that the diameter of the nanofibers was around 502 nm, the tensile strength, contact angle, porosity, water vapor permeability, and water uptake ratio of CA/Gel nanofibers were around 2.83 MPa, 58.07, 78.17 %, 11.23 mg/cm2 hr, and 12.78 respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1, 76.17 ± 0.76 %, 10.17 ± 0.21 mg/cm2 hr, 14.37 ± 0.42 respectively. The bacterial evaluations demonstrated that the dressings are an excellent barrier against bacterial penetration with potent antibacterial activity. The animal studies depicted that the collagen density and angiogenesis score in the CA/Gel/Beri treated group were 88.8±6.7 % and 19.8±3.8, respectively. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activates. In conclusion, our findings implied that the prepared mat is a proper wound dressing for DFU management and treatment.


2016 ◽  
Vol 69 ◽  
pp. 804-814 ◽  
Author(s):  
Alireza Rezapour-Lactoee ◽  
Hamid Yeganeh ◽  
Seyed Nasser Ostad ◽  
Reza Gharibi ◽  
Zohreh Mazaheri ◽  
...  

2003 ◽  
Vol 14 (5) ◽  
pp. 481-495 ◽  
Author(s):  
Wen-Hsiang Chang ◽  
Yen Chang ◽  
Po-Hong Lai ◽  
Hsing-Wen Sung

Sign in / Sign up

Export Citation Format

Share Document