Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: In vitro and in vivo studies

2017 ◽  
Vol 33 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Mahdi Naseri-Nosar ◽  
Saeed Farzamfar ◽  
Majid Salehi ◽  
Ahmad Vaez ◽  
Roksana Tajerian ◽  
...  
2021 ◽  
pp. 096739112110292
Author(s):  
Arash Montazeri ◽  
Fariba Saeedi ◽  
Yaser Bahari ◽  
Ahmad Ahmadi Daryakenari

The present research aimed to examine the biological properties of chitosan (CS)–polyvinyl alcohol (PVA) scaffolds reinforced with graphene oxide (GO) nanosheets, as wound dressings. The scaffolds were characterized by various techniques. The scanning electron microscopy (SEM) and thermogravimetry analyses (TGAs) were used to investigate distribution of the GO within the polymer. The viscoelastic properties were evaluated by dynamic mechanical thermal analysis (DMTA) to examine the quality of a wound dressing. In vitro and in vivo studies were conducted to assess the biocompatibility of the scaffolds as wound dressing. The cell viability and proliferation results indicated that mouse fibroblast cells (L929) could adhere on the 50CS–50PVA/3 wt% GO scaffold. Herewith, the fabricated CS–PVA–GO nanocomposite scaffolds are suggested as promising biomaterials for skin tissue engineering and wound dressing.


2016 ◽  
Vol 13 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Lonette Wallis ◽  
Maides Malan ◽  
Chrisna Gouws ◽  
Dewald Steyn ◽  
Suria Ellis ◽  
...  

2021 ◽  
pp. 51764
Author(s):  
Alireza Akbari ◽  
Shahram Rabbani ◽  
Shiva Irani ◽  
Mojgan Zandi ◽  
Fereshteh Sharifi ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Arbaz Sajjad ◽  
Samia Subhani Sajjad

Objectives. To review composition, actions, and clinical applications of Aloe vera plant in dentistry and to establish its effectiveness as an invaluable adjunct in the treatment of dental diseases. Method. A manual and electronic literature (MEDLINE, Cochrane Central Register of Controlled Trials, and Google Scholar) search was performed up to July 2013 for in vitro and in vivo studies and research presenting clinical, microbiological, immunological, and patient-centered data to validate the efficacy of Aloe vera gel in dentistry. A total of 38 titles, abstracts, and full-text studies were selected and reviewed. Aloe vera has various medicinal properties like anti-inflammatory, antibacterial, antiviral, and antitumor which accelerates wound healing and helps in treating various lesions in oral cavity. Benefits associated with Aloe vera have been attributed to the polysaccharides contained in the gel of the leaves. Conclusion. The pharmacological attributes of Aloe vera have been revalidated in modern sciences through various in vivo and in vitro studies. The herb has immense potential as a dental therapeutic. Even though Aloe vera is a promising herb with various clinical applications in medicine and dentistry, more clinical research needs to be undertaken especially to validate and explain the action of acemannan hydrogel in accelerating the healing of aphthous ulcers and to validate the efficacy of Aloe gel on plaque and gingivitis, so that it can be established in the field of dentistry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amnah Asiri ◽  
Syafiqah Saidin ◽  
Mohd Helmi Sani ◽  
Rania Hussien Al-Ashwal

AbstractIn this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O–H and N–H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198–286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young’s modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14–21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.


2018 ◽  
Vol 33 (4) ◽  
pp. 527-540 ◽  
Author(s):  
Marek Konop ◽  
Joanna Czuwara ◽  
Ewa Kłodzińska ◽  
Anna K Laskowska ◽  
Urszula Zielenkiewicz ◽  
...  

Impaired wound healing is a major medical problem in diabetes. The objective of this study was to determine the possible application of an insoluble fraction of fur-derived keratin biomaterial as a wound dressing in a full thickness surgical skin wound model in mice ( n = 20) with iatrogenically induced diabetes. The obtained keratin dressing was examined in vitro and in vivo. In vitro study showed the keratin dressing is tissue biocompatible and non-toxic for murine fibroblasts. Antimicrobial examination revealed the keratin dressing inhibited the growth of S. aureus and E. coli. In vivo studies showed the obtained dressing significantly ( p < 0.05) accelerated healing during the first week after surgery compared to control wounds. Keratin dressings were incorporated naturally into granulation and regenerating tissue without any visible signs of inflammatory response, which was confirmed by clinical and histopathological analysis. It is one of the first studies to show application of insoluble keratin proteins and its properties as a wound dressing. The obtained keratin dressing accelerated wound healing in mice with iatrogenically induced diabetes. Therefore, it can be considered as a safe and efficient wound dressing. Although future studies are needed to explain the molecular mechanism behind fur-derived keratin effect during the multilayer wound healing process, our findings may open the way for a new class of insoluble fur keratin dressings in chronic difficult to heal wounds treatment.


Author(s):  
Mohadeseh Hadizadeh ◽  
Mitra Naeimi ◽  
Mohammad Rafienia ◽  
Akbar Karkhaneh

2019 ◽  
Vol 25 (20) ◽  
pp. 2208-2240 ◽  
Author(s):  
Hanna Svitina ◽  
Roan Swanepoel ◽  
Jacques Rossouw ◽  
Happiness Netshimbupfe ◽  
Chrisna Gouws ◽  
...  

The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.


Sign in / Sign up

Export Citation Format

Share Document