scholarly journals Development and Evaluation of Alginate Membranes with Curcumin-Loaded Nanoparticles for Potential Wound-Healing Applications

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.

2021 ◽  
pp. 096739112110292
Author(s):  
Arash Montazeri ◽  
Fariba Saeedi ◽  
Yaser Bahari ◽  
Ahmad Ahmadi Daryakenari

The present research aimed to examine the biological properties of chitosan (CS)–polyvinyl alcohol (PVA) scaffolds reinforced with graphene oxide (GO) nanosheets, as wound dressings. The scaffolds were characterized by various techniques. The scanning electron microscopy (SEM) and thermogravimetry analyses (TGAs) were used to investigate distribution of the GO within the polymer. The viscoelastic properties were evaluated by dynamic mechanical thermal analysis (DMTA) to examine the quality of a wound dressing. In vitro and in vivo studies were conducted to assess the biocompatibility of the scaffolds as wound dressing. The cell viability and proliferation results indicated that mouse fibroblast cells (L929) could adhere on the 50CS–50PVA/3 wt% GO scaffold. Herewith, the fabricated CS–PVA–GO nanocomposite scaffolds are suggested as promising biomaterials for skin tissue engineering and wound dressing.


2018 ◽  
Vol 33 (4) ◽  
pp. 527-540 ◽  
Author(s):  
Marek Konop ◽  
Joanna Czuwara ◽  
Ewa Kłodzińska ◽  
Anna K Laskowska ◽  
Urszula Zielenkiewicz ◽  
...  

Impaired wound healing is a major medical problem in diabetes. The objective of this study was to determine the possible application of an insoluble fraction of fur-derived keratin biomaterial as a wound dressing in a full thickness surgical skin wound model in mice ( n = 20) with iatrogenically induced diabetes. The obtained keratin dressing was examined in vitro and in vivo. In vitro study showed the keratin dressing is tissue biocompatible and non-toxic for murine fibroblasts. Antimicrobial examination revealed the keratin dressing inhibited the growth of S. aureus and E. coli. In vivo studies showed the obtained dressing significantly ( p < 0.05) accelerated healing during the first week after surgery compared to control wounds. Keratin dressings were incorporated naturally into granulation and regenerating tissue without any visible signs of inflammatory response, which was confirmed by clinical and histopathological analysis. It is one of the first studies to show application of insoluble keratin proteins and its properties as a wound dressing. The obtained keratin dressing accelerated wound healing in mice with iatrogenically induced diabetes. Therefore, it can be considered as a safe and efficient wound dressing. Although future studies are needed to explain the molecular mechanism behind fur-derived keratin effect during the multilayer wound healing process, our findings may open the way for a new class of insoluble fur keratin dressings in chronic difficult to heal wounds treatment.


2021 ◽  
Vol 30 (6) ◽  
pp. 482-490
Author(s):  
Fahimeh Farshi Azhar ◽  
Paria Rostamzadeh ◽  
Monireh Khordadmehr ◽  
Mehran Mesgari-Abbasi

Objective: Hard-to-heal wounds, such as pressure ulcers and diabetic ulcers, are a major challenge for wound dressings. The aim of this study was to develop a bioactive dressing based on polymers and natural materials with unique biological and therapeutic properties. Method: The dressing was composed of an active layer containing polyvinyl alcohol (PVA), honey, curcumin and keratin, and an upper layer with lower hydrophilicity comprising PVA to induce flexibility. Physicochemical properties of the dressing were characterised by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, swelling behaviour and antibacterial measurements. A wound healing study was performed using an experimental rat model and two different compositions of the bioactive dressing were compared with a commercial wound dressing (Comfeel, Coloplast, Denmark). Histopathological evaluation was conducted for this purpose. Results: Characterisation results showed that a smooth bilayer film with two homogenous but distinct layers was produced. The dressing also provided adequate moisture to the wound environment without infection and adhesion due to dryness occurring. Our results exhibited significant bactericidal activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and improved the wound healing process without any scarring. Histopathological findings demonstrated a significant higher healing rate in vivo together with well-formed epidermis, granulation tissue formation and tissue contraction, when compared with the commercial wound dressing. Conclusion: Our results demonstrated acceptable physical and healing effects for the novel bioactive wound dressing; however, more investigations are recommended.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Arash Almasian ◽  
Farhood Najafi ◽  
Mahdieh Eftekhari ◽  
Mohammad Reza Shams Ardekani ◽  
Mohammad Sharifzadeh ◽  
...  

Diabetic ulcer is regarded as one of the most prevalent chronic diseases. The healing of these ulcers enhances with the use of herbal extracts containing wound dressings with high antibacterial property and creating a nano-sized controlled release system. In this study, new peppermint extract was incorporated in the polyurethane- (PU-) based nanofibers for diabetic wound healing. The peppermint extract was used as an herbal antimicrobial and anti-inflammatory agent. The absorption ability of the wound dressing was enhanced by addition of F127 pluronic into the polymer matrix. The release of the extract was optimized by crosslinking the extract with gelatin nanoparticles (CGN) and their eventual incorporation into the nanofibers. The release of the extract was also controlled through direct addition of the extract into the PU matrix. The results showed that the release of extract from nanofibers was continued during 144 hours. The prepared wound dressing had a maximum absorption of 410.65% and an antibacterial property of 99.9% against Staphylococcus aureus and Escherichia coli bacteria. An in vivo study indicated on significant improving in wound healing after the use of the extract as an effective compound. On day 14, the average healing rate for samples covered by conventional gauze bandage, PU/F127, PU/F/15 (contained extract), and PU/F/15/10 (contained extract and CGN) prepared with different nanoparticle concentrations of 5 and 10 was 47.1 ± 0.2, 56.4 ± 0.4, 65.14 ± 0.2, and 90.55 ± 0.15%, respectively. Histopathological studies indicated that the wound treated with the extract containing nanofibers showed a considerable inflammation reduction at day 14. Additionally, this group showed more resemblance to normal skin with a thin epidermis presence of normal rete ridges and rejuvenation of skin appendages. Neovascularization and collagen deposition were higher in wounds treated with the extract containing nanofibrous wound dressing compared to the other groups.


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


2001 ◽  
Vol 20 (10) ◽  
pp. 533-550 ◽  
Author(s):  
V Ciaravino ◽  
T McCullough ◽  
A D Dayan

The pathogen inactivation process developed by Cerus and Baxter Healthcare Corporations uses the psoralen, S-59 (amotosalen) in an ex vivo photochemical treatment (PCT) process to inactivate viruses, bacteria, protozoans, and leukocytes in platelet concentrates and plasma. Studies were performed by intravenous infusion of S-59 PCT formulations-compound adsorption device (CAD) treatment and with non-UVA illuminated S-59, using doses that were multiples of potential clinical exposures. The studies comprised full pharmacokinetic, single and repeated-dose (up to 13 weeks duration) toxicity, safety pharmacology (CNS, renal, and cardiovascular), reproductive toxicity, genotoxicity, carcinogenicity testing in the p53- mouse, vein irritation, and phototoxicity. No specific target organ toxicity (clinical or histopathological), reproductive toxicity, or carcinogenicity was observed. S-59 and/or PCT formulations demonstrated CNS, ECG, and phototoxicity only at supraclinical doses. Based on the extremely large safety margins (>30,000 fold expected clinical exposures), the CNS and ECG observations are not considered to have any toxicological relevance. Additionally, after a complete assessment, mutagenicity and phototoxicity results are not considered relevant for the proposed use of INTERCEPT platelets. Thus, the results of an extensive series of in vitro and in vivo studies have not demonstrated any toxicologically relevant effects of platelet concentrates prepared by the INTERCEPT system.


Sign in / Sign up

Export Citation Format

Share Document