scholarly journals A Study to Achieve Minimum Surface Roughness in Wire EDM

2014 ◽  
Vol 5 ◽  
pp. 2560-2566 ◽  
Author(s):  
Anmol Bhatia ◽  
Sanjay Kumar ◽  
Parveen Kumar
2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
Gregory Bicknell ◽  
Guha Manogharan

Wire electric discharge machining (EDM) is a non-traditional machining method that has the ability to machine hard, conductive materials, with no force and high precision. This technology is used in industries, like the aerospace industry, to create precision parts used in high stress applications. Wire EDM is also commonly used in additive manufacturing (AM) applications to remove printed parts from the base-plates onto which they are printed. Numerous studies show the effects of EDM parameters, like pulse-on time, pulse-off time, and cutting voltage, on the processing of traditionally fabricated metal parts. However, very few studies identify how the parameters of wire EDM affect the processing of AM parts. This paper studies the effect of wire EDM pulse-on time, pulse-off time, and cutting voltage on the machining time, surface roughness, and hardness of additively manufactured 316L stainless steel cylinders. The effects of these wire EDM parameters are then tested on the machining time, surface roughness, and hardness of wrought 316L stainless steel cylinders. It was found that machining time of AM samples was statistically significantly lower than wrought samples and also had better surface finish and lower surface hardness.


2014 ◽  
Vol 984-985 ◽  
pp. 118-123 ◽  
Author(s):  
S. Periyasamy ◽  
M. Aravind ◽  
D. Vivek ◽  
K.S. Amirthagadeswaran

In this study, the response surface methodology was used to optimize the process parameters of constant speed horizontal spindle surface grinding. The experiments were conducted based on the design expert software. The surface roughness characteristics were investigated in AISI 1080 steel plates using A60V5V grinding wheels. The optimum parameters for minimum surface roughness were found using Design Expert software. The parameters for a particular surface roughness value can also be determined using the results of this experiment. This results shows that feed has a greater effect on surface roughness and feed has medium effect on surface roughness. While dressing depth of cut has a very minimal effect on surface roughness.


Sign in / Sign up

Export Citation Format

Share Document