New bending mode in SAQP Si fins and its mitigation

2022 ◽  
Vol 141 ◽  
pp. 106437
Author(s):  
Alfonso Sepulveda ◽  
David Hellin ◽  
Liping Zhang ◽  
Karine Kenis ◽  
Dmitry Batuk ◽  
...  
Keyword(s):  
2009 ◽  
Vol E92-C (8) ◽  
pp. 1058-1065 ◽  
Author(s):  
Fuhliang WEN ◽  
Chao-Chun WEN ◽  
Ming-Hung LAI ◽  
Ichien HSU

2021 ◽  
Vol 11 (8) ◽  
pp. 3655
Author(s):  
Gee-Soo Lee ◽  
Chan-Jung Kim

Microcracks of depth less than 200 μm in mechanical components are difficult to detect because conventional methods such as X-ray or eddy current measurements are less sensitive to such depths. Nonetheless, an efficient microcrack detection method is required urgently in the mechanical industry because microcracks are produced frequently during cold-forming. The frequency response function (FRF) is known to be highly sensitive even to microcracks, and it can be obtained using both the input data of an impact hammer and the response data of an accelerometer. Under the assumption of an impulse force with a similar spectral impulse pattern, spectral response data alone could be used as a crack indicator because the dynamic characteristics of a microcrack may be dependent solely on these measured data. This study investigates the feasibility of microcrack detection using the response data alone through impact tests with a simple rectangular specimen. A simple rectangular specimen with a 200 μm microcrack at one face was prepared. The experimental modal analysis was conducted for the normal (uncracked) specimen and found-first bending mode about 1090 Hz at the X-Y plane (in-plane). Response accelerations were obtained in both at in-plane locations as well as X-Z plane (out-of-plane), and the crack was detected using the coherence function between a normal and a cracked specimen. A comparison of the crack inspection results obtained using the response data and the FRF data indicated the validity of the proposed method.


1966 ◽  
Vol 20 (3) ◽  
pp. 159-160 ◽  
Author(s):  
T. S. Herman

The effects of chlorine atoms on the fundamental frequencies of the s-triazine ring are discussed and the vibrational assignments in the region 1600–700 cm−1 are extended. The variation in the position of the C3N3-ring bending mode in the region near 810 cm−1 is discussed.


2021 ◽  
pp. 113052
Author(s):  
Xiangyu Gao ◽  
Jinfeng Liu ◽  
Benjian Xin ◽  
Haonan Jin ◽  
Lichen Luo ◽  
...  

2012 ◽  
Vol 579 ◽  
pp. 357-364
Author(s):  
Kuen Ming Shu ◽  
Wen Hsiang Hsieh ◽  
Yu Guang Li ◽  
Chi Wei Chi ◽  
Yi Shen Li

Solar panels conduct electricity through aluminum strips on substrate surfaces. Ultrasonic roll welding can weld the conductive aluminum strips onto the glass substrates. This paper illustrates vibration characteristics and optimal design of amplitude horns used in the ultrasonic welding roll. Based on theoretical equations, this study used the ANSYS software to establish the parametric model according to design requirements. With the parametric model as the initial design, this study conducted modal analysis and harmonic analysis to obtain the vertical mode and disc bending mode of the horn, and measured the resonant frequency, amplitude amplification rate and stress distribution. Finally, this study implemented and verified the optimal coupled disc tool of the ultrasonic horn.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


Sign in / Sign up

Export Citation Format

Share Document